Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-27T00:55:22.798Z Has data issue: false hasContentIssue false

Advances in sustainable fluorine-free CSD YBa2Cu3O7 thin films

Published online by Cambridge University Press:  07 November 2013

Pieter Vermeir
Affiliation:
University College Ghent, Faculty of Applied Engineering sciences, Belgium. Ghent University, Department of Inorganic and physical chemistry, Belgium.
Jonas Feys
Affiliation:
Ghent University, Department of Inorganic and physical chemistry, Belgium.
Glenn Pollefeyt
Affiliation:
Ghent University, Department of Inorganic and physical chemistry, Belgium.
Bram Verslyppe
Affiliation:
University College Ghent, Faculty of Applied Engineering sciences, Belgium.
Asha De Brabandere
Affiliation:
University College Ghent, Faculty of Applied Engineering sciences, Belgium.
Kim Verbeken
Affiliation:
Ghent University, Department of Materials Science and Engineering, Belgium.
Michael Bäcker
Affiliation:
Deutsche Nanoschicht, Germany.
Petra Lommens
Affiliation:
Ghent University, Department of Inorganic and physical chemistry, Belgium.
Joseph Schaubroeck
Affiliation:
University College Ghent, Faculty of Applied Engineering sciences, Belgium.
Klaartje De Buysser
Affiliation:
Ghent University, Department of Inorganic and physical chemistry, Belgium.
Isabel Van Driessche
Affiliation:
Ghent University, Department of Inorganic and physical chemistry, Belgium.
Get access

Abstract

Chemical solution deposition techniques are a very competitive low cost method to achieve coated conductors. Recently, fluorine-free CSD methods have made a great progress for the preparation of YBCO thin films and became a sustainable alternative for the well-known trifluoroacetate CSD approach. By elucidating the reaction mechanism behind this new approach, finally giving an answer to the question why it is possible to fabricate YBCO films without TFA, different processing routes were discovered giving rise to high superconducting YBCO films (>1MA.cm-2). Each route has it's own benefits. One specific route offers the opportunity to tune the crystallographic orientation. By changing one process parameter, a shift from complete c-axis to complete a-axis orientation is observed. This can be very useful for e.g. Josephson Junctions.

We particularly investigated the fundamental reaction mechanism of each reaction route, with the focus on the corresponding barium compound. Although good superconducting properties are obtained, still one major drawback limits industrial implementation: thickness. It is observed that a critical thickness of ∼500 nm eliminates the superconducting properties. Therefore, this paper gives a summary of all progress made regarding to fluorine-free water-based CSD YBCO thin films with emphasis on the possibility to control the crystallization rate.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bednorz, J.G. and Muller, K.A., Z. Phys. B 64, 2 (1986).10.1007/BF01303701CrossRefGoogle Scholar
Bäcker, M., Kristallogr, Z.. 226 (2011).10.1524/zkri.2011.1330CrossRefGoogle Scholar
Selvamanickam, V., Chen, Y.M., Xiong, X.M., Xie, Y.Y.Y., Martchevski, M., Rar, A., Qiao, Y.F., Schmidt, R.M., Knoll, A., Lenseth, K.P. and Weber, C.S., IEEE Trans. Appl. Supercond. 19, 3 (2009).10.1109/TASC.2009.2018792CrossRefGoogle Scholar
Pollefeyt, G., Rottiers, S., Vermeir, P., Lommens, P., Hühne, R., De Buysser, K. and Van Driessche, I., J. Mater. Chem. A 1 (2013).Google Scholar
Vermeir, P., Cardinael, I., Bäcker, M., Schaubroeck, J., Schacht, E., Hoste, S. and Van Driessche, I., Supercond. Sci.Technol. 22 075009 (2009).10.1088/0953-2048/22/7/075009CrossRefGoogle Scholar
Van Driessche, I., Penneman, G., Bruneel, E. and Hoste, S., Pure Appl. Chem. 74 (2002).10.1351/pac200274112101CrossRefGoogle Scholar
Vermeir, P., Deruyck, F., Feys, J., Lommens, P., Schaubroeck, J. and Van Driessche, I., J. Sol-Gel Sci. Technol. 62 (2012).10.1007/s10971-012-2737-3CrossRefGoogle Scholar
Feys, J., Vermeir, P., Lommens, P., Hopkins, S.C., Granados, X., Glowacki, B.A., Bäcker, M., Reich, E., Ricard, S., Holzapfel, B., Van Der Voort, P. and Van Driessche, I., J. Mater. Chem. 22 (2012)10.1039/C1JM14899KCrossRefGoogle Scholar
Obradors, X., Puig, T., Pomar, A., Sandiumenge, F., Mestres, N., Coll, M., Cavallaro, A., Roma, N., Gazquez, J., Gonzalez, J.C., Castano, O., Gutierrez, J., Palau, A., Zalamova, K., Morlens, S., Hassini, A., Gibert, M., Ricart, S., Moreto, J.M., Pinol, S., Isfort, D. and Bock, J., Supercond. Sci. Technol. 19, 3 (2006).10.1088/0953-2048/19/3/003CrossRefGoogle Scholar
Albiss, B.A. and Obaidat, I.M., J. Mater. Chem. 20 (2010).10.1039/B917294GCrossRefGoogle Scholar
Manabe, T., Sohma, M., Yamaguchi, I., Tsudaka, K., Kondo, W., Kamiya, K., Tsuchiya, T., Mizuta, S., Kumagai, T., Physica C 445 (2006).Google Scholar
Schoofs, B., Cloet, V., Vermeir, P., Schaubroeck, J., Hoste, S. and Van Driessche, I., Supercond. Sci. Technol. 19, 11 (2006).10.1088/0953-2048/19/11/015CrossRefGoogle Scholar
Schoofs, B., Van de Vyver, D., Vermeir, P., Schaubroeck, J., Hoste, S., Herman, G. and Van Driessche, I., J. Mater. Chem. 17, 17 (2007).10.1039/B614149HCrossRefGoogle Scholar
Vermeir, P., Cardinael, I., Schaubroeck, J., Verbeken, K., Baecker, M., Lommens, P., Knaepen, W., D’haen, J., De Buysser, K. and Van Driessche, I., Inorg. Chem. 49, 10 (2010).10.1021/ic9021799CrossRefGoogle Scholar
Vermeir, P., Feys, J., Schaubroeck, J., Verbeken, K., Baecker, M. and Van Driessche, I., Mater. Chem. Phys. 133, 23 (2012).10.1016/j.matchemphys.2012.02.006CrossRefGoogle Scholar