Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-09T19:17:02.159Z Has data issue: false hasContentIssue false

Advances in Precursor Development for CVD of Bariumcontaining Materials

Published online by Cambridge University Press:  15 February 2011

Brian A. Vaartstra
Affiliation:
Advanced Technology Materials Inc., 7 Commerce Dr., Danbury, CT 06810
R. A. Gardiner
Affiliation:
Advanced Technology Materials Inc., 7 Commerce Dr., Danbury, CT 06810
D. C. Gordon
Affiliation:
Advanced Technology Materials Inc., 7 Commerce Dr., Danbury, CT 06810
R. L. Ostrander
Affiliation:
University of Delaware, Department of Chemistry, Newark, DE 19716
A. L. Rheingold
Affiliation:
University of Delaware, Department of Chemistry, Newark, DE 19716
Get access

Abstract

Barium titanate and barium-strontium titanate (BST) are high dielectric materials, likely to replace state-of-the-art capacitor materials for memory applications. Chemical Vapor Deposition (CVD) of these materials has been hampered, particularly by the lack of suitable precursors for barium. Although attempts to make volatile metal-organic barium compounds have met with some progress, a suitably stable, volatile barium source is still in demand. This paper will highlight recent developments at ATM, including syntheses and structures of polyamine and glycol ether adducts which have been designed to limit aggregation of barium diketonates, and stabilize the adducts with respect to ligand dissociation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. (a) Gleizes, A., Sans-Lenain, S., Medus, D., C. R. Acad. Sci. Paris, 313 II, 761 (1991).Google Scholar
(b) Drozdov, A. A., Trojanov, S. I., Polyhedron, 22, 2877 (1992).CrossRefGoogle Scholar
2. Belcher, R., Cranley, C. P., Majer, J. R., Stephen, W. I., Uden, P. C., Anal. Chim. Acta, 60, 109 (1972).Google Scholar
3. (a) Gardiner, R., Brown, D. W., Kirlin, P. S., Rheingold, A. L., Chem. Mater., 3, 1053 (1991).CrossRefGoogle Scholar
(b) Timmer, K., Spee, C. I. M. A., Mackor, A., Meinema, H. A., Eur. Pat. Appl. 0405634A2 (1991).Google Scholar
(c) Malandrino, G., Richeson, D. S., Marks, T. J., DeGroot, D. C., Schindler, J. L., Kannewurf, C. R., Appl. Phys. Lett., 58, 182 (1991).Google Scholar
(d) Zhang, J. M., Wessels, B. W., Richeson, D. S., Marks, T. J., DeGroot, D. C., Kannewurf, C. R., J. Appl. Phys., 69, 2743 (1991).Google Scholar
(e) Hamaguchi, N., Gardiner, R., Kirlin, P. S., Dye, R., Hubbard, K. M., Muenchause, R. E., Appl. Phys. Lett., 57, 2136 (1990).Google Scholar
4. Buriak, J. M., Cheatham, L. K., Gordon, R. G., Graham, J. J., Barron, A. R., Eur. J. Solid State Inorg. Chem., 29, 43 (1992).Google Scholar
5. Rees, W. S. Jr., Carris, M. W., Hesse, W., Inorg. Chem., 30, 4479 (1991).CrossRefGoogle Scholar
6. An example of a polyamine coordinated to a fluorinated barium diketonate has been reported recently: Drake, S. R., Hursthouse, M. B., Malik, K. M. A., Miller, S. A. S., Otway, D. J., Inorg. Chem., 32, 4464 (1993).Google Scholar
7. Gleizes, A., Sans-Lenain, S., Medus, D., Mat. Res. Soc. Symp. Proc., 271, 919 (1992).Google Scholar
8. Turnipseed, S. B., Barkley, R. M., Sievers, R. E., Inorg. Chem., 30, 1164 (1991).Google Scholar
9. Miele, P., Foulton, J.-D., Hovnanian, N., Polyhedron, 12, 209 (1993). (HOAr = 3,5-di-tertbutylphenol)Google Scholar
10. Details of this and subsequent crystal structure studies will be published elsewhere.Google Scholar
11. Drake, S. R., Miller, S. A. S., Williams, D. J., lnorg. Chem., 32, 3227 (1993).Google Scholar
12. Vaartstra, B. A., Huffman, J. C., Gradeff, P. S., Hubert-Pfalzgraf, L. G., Daran, J.-C., Parraud, S., Yunlu, K., Caulton, K. G., Inorg. Chem., 29, 3126 (1990).Google Scholar