Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-23T09:20:55.926Z Has data issue: false hasContentIssue false

Adsorption of UF6on Graphene Derivatives: a Computational Study of Conditions for 2D Enrichment

Published online by Cambridge University Press:  19 May 2014

Yang Wei Koh
Affiliation:
Bioinformatics Institute, 30 Biopolis Street, #07-10 Matrix, Singapore 138671, Singapore
Kenneth Westerman
Affiliation:
Department of Chemical and Biological Engineering, Tufts University, 4 Colby Street, Medford, MA, 02155, USA
Sergei Manzhos*
Affiliation:
Department of Mechanical Engineering, National University of Singapore, Block EA #07-08, 9 Engineering Drive 1, Singapore 117576, Singapore
Get access

Abstract

We present a computational density functional theory study of UF6 adsorption on ideal as well as hydrogenated and fluorinated graphene. We show that (i) the isotopic splitting in the vibrational spectrum of UF6 observed in vacuum is largely preserved in the adsorbed molecules. The existence of several adsorption configurations with competing Eads leads to overlaps in the vibrational spectra of isotopomers, but isotopomer-unique modes exist on all three surfaces. (ii) The adsorption energy of UF6 is of the order of 1.2 eV on ideal graphene, 1 eV on graphane, and 0.1 eV on fluorographene, i.e. the adsorption strength is moderate and can be controlled by surface modification. (i) and (ii) mean that it may be possible to cause desorption of a selected isotopomer by laser radiation, leading to isotopic separation between the surface and the gas.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Zhang, Y.-G. and Zha, X.-W., Chin. Phys. B, 21, 073301 (2012).CrossRefGoogle Scholar
Díaz, C. and Olsen, R. A., J. Chem. Phys. 130, 094706 (2009).CrossRefGoogle Scholar
Jiang, B., Li, J., Xie, D., and Guo, H., J. Chem. Phys. 138, 044704 (2013).CrossRefGoogle Scholar
Afsari, M., Safdari, J., Towfighi, J., and Mallah, M. H., Annals of Nuclear Energy. 46, 144 (2012).CrossRefGoogle Scholar
Karlicky, F., Datta, K. K. R., Otyepka, M., and Zboril, R., ACS Nano, 7, 6434 (2013).CrossRefGoogle Scholar
Elias, D. C., Nair, R. R., Mohiuddin, T. M. G., Morozov, S. V., Blake, P., Halsall, M. P., Ferrari, A. C., Boukhvalov, D. W., Katsnelson, M. I., Geim, A. K., and Novoselov, K. S., Science. 323, 610 (2009).CrossRefGoogle Scholar
Huang, C., Li, C., and Shi, G., Energy Environ. Sci. 5, 8848 (2012).CrossRefGoogle Scholar
Dai, L., Acc. Chem. Res. 46, 31 (2013).CrossRefGoogle Scholar
Kohn, W. and Sham, L. J., Phys. Rev. 40, A1133 (1965).CrossRefGoogle Scholar
Perdew, J. P., Burke, K., and Ernzerhof, M., Phys. Rev. Lett. 77, 3865 (1996).CrossRefGoogle Scholar
Soler, J. M., Artacho, E., Gale, J. D., Garcia, A., Junquera, J., Ordejon, P., and Sanchez-Portal, D., J. Phys. Condens. Matter 14, 2745 (2002).CrossRefGoogle Scholar
Troullier, N. and Martins, J. L., Phys. Rev. B 43, 1993 (1991).CrossRefGoogle Scholar
Garcia, A., ATOM (computer program), v. 3.2.8 (2008).Google Scholar
Kattel, S., Atanassov, P., and Kiefer, B., J. Phys. Chem. C 116, 17378 (2012).CrossRefGoogle Scholar
Jiang, D., Sumpter, B.G., and Dai, S., J. Chem. Phys. 126, 134701 (2007).CrossRefGoogle Scholar
Rajesh, C., Majumder, C., Mizuseki, H., and Kawazoe, Y., J. Chem. Phys. 130, 124911 (2009).CrossRefGoogle Scholar
Kimura, M., Schomaker, V., Smith, D. W., and Weinstock, B., J. Chem. Phys. 48, 4001 (1967).CrossRefGoogle Scholar
Pantazis, D. A. and Neese, F., J. Chem. Theory Comput. 7, 677 (2011).CrossRefGoogle Scholar
Song, W. Z. and Gu, D., J. Nucl. Radiochem. 12, 175 (1990).Google Scholar
McDowell, R. S., Asprey, L. B., Paine, R. T., J. Chem. Phys. 61, 3571 (1974).CrossRefGoogle Scholar
Odoh, S. O. and Schreckenbach, G., J. Phys. Chem. A 114, 1957 (2010).CrossRefGoogle Scholar
Frisch, M. J. et al. ., GAUSSIAN 09, Gaussian Inc, Wallingford, CT (2009).Google Scholar
Kuechle, W., Dolg, M., Stoll, H., and Preuss, H., J. Chem. Phys. 100, 7535 (1994).CrossRefGoogle Scholar
Cao, X., Dolg, M., and Stoll, H., J. Chem. Phys. 118, 487 (2003).CrossRefGoogle Scholar
Moritz, A. and Dolg, M., Theor. Chem. Acc. 121, 297 (2008).CrossRefGoogle Scholar
Becke, A. D., J. Chem. Phys. 98, 5648 (1993).CrossRefGoogle Scholar
Yang, X.-F., Wang, A., Qiao, B., Li, J., Liu, J., and Zhang, T., Acc. Chem. Res. 46, 1740 (2013).CrossRefGoogle Scholar