Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-25T17:56:42.910Z Has data issue: false hasContentIssue false

Adsorption of Chromium (VI) from Aqueous Solutions Using Sol-Gel Anionic Clays with Mg/ Al=7

Published online by Cambridge University Press:  01 February 2011

Ramos R. Esthela
Affiliation:
Departamento de Química y
Gutiérrez O. Norma
Affiliation:
Departamento de Química y
Contreras S. Cesar
Affiliation:
Departamento de Química y
Álvarez R. Javier
Affiliation:
Departamento de Química y
Fuentes R. Rosalba
Affiliation:
Departamento de Ingeniería de la División de Ciencias Naturales y Exactas de la Universidad de Guanajuato, Noria Alta s/n, Col. Noria Alta, C.P: 36050, Guanajuato, Guanajuato., México. Email: [email protected]
Get access

Abstract

Anionic clays has been used in the adsorption of anionic species of toxic heavy metals, such as chromium (VI), which is considered to be a dangerous pollutant, due to its deleterious effects on human health such as epithelial irritation and cancer. In this work the removal of chromium in aqueous solutions using anionic clays with Mg/Al=7 was determined. The anionic clays were synthesized by the sol-gel method at pH 10 and 11.5, and were characterized by X-ray diffraction, thermal analysis, infrared spectroscopy and N2 adsorption Brunauer-Emmett-Teller (BET). By this method, anionic clay containing brucite was obtained. The solids exhibited meso-porosity, high surface areas and thermal stability until 500°C. The data obtained from the adsorption experiments of chromium fitted to the Langmuir adsorption isotherm model and the adsorbent capacity was determined using the Langmuir adsorption equation. The maximum chromium uptake was 45 mg of Cr/g sorbent and 43 mg Cr/g sorbent for anionic clays prepared to pH 10 and 11.5, respectively. The Cr saturation point was attained after eight minutes stirring time. According to chromium adsorption values, the solution pH does not have a significant affect on the adsorption capacity of the anionic clays.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Alloway, B. J. and Ayres, A. K., 2nd ed. Chemical Principles Of Environ-Mental Pollution, (1997) p214 Google Scholar
2. Strreth, F., Scavengers 8, 719 (1978)Google Scholar
3. Kornhauser, C., Wrobel, K., Wrobel, K., Malacara, J.M., Nava, L.E., Gomez, L., Gonzalez, R., Industrial Health 40, 207213 (2002)Google Scholar
4. Porter, D. J., Raymond, L. W. and Anastasio, G. D., J. Arch. Family Medicine. 8, 386390 (1999)Google Scholar
5. de Filipps, L. F., Pallaghy, C. K., Alg. Wat. Pollut 31. (1994)Google Scholar
6. Lalvani, S. B., Wiltowski, T., Hubner, A., Weston, A. and Mandich, N., Carbon 36, 12191226 (1998)10.1016/S0008-6223(98)00102-XGoogle Scholar
7. Tahir, H., Saleem, M., Afzal, M., Ahmad, H., Hussain, S. T. and Afjal, J., Adsorption Sci. Technol. 16, 153161 (1998)Google Scholar
8. Ghosh, U. C., Dasgupta, M., Bhat, S.C. and Manna, B., Chem. Environ. Res. 10, 321331 (2001)Google Scholar
9. Rengaraj, S., Yeon, K. H. and Moon, S. H., J. Hazard. Mater. B87, 273287 (2001)Google Scholar
10. Othman, M. R., Rasid, N. M. and Fernando, W.J.N., Microporous and Mesoporous Materials, 93, 2328 (2006)Google Scholar
11. Cavani, T., Trifiro, E. and Vaccari, E. A., Catalysis Today, 2, 173175 (1991)Google Scholar
12. Ramos, E., Lopez, T. and Bosch, P., J. of Sol-Gel Sci. and Tech. 8, 437440 (1997)Google Scholar
13. Kloprogge, J. T., Hickey, L., Frost, R. L., Journal of Raman Spectroscopy, 35 (8), 967974 (2004)Google Scholar
14. Ramos, E., Lopez, T., Bosch, P., Asomoza, M. and Gomez, R., J. Sol-Gel Sci. Tech, 8, 437442(1997)Google Scholar
15. Rouquerol, F., Rouquerol, J. and Sing, K. Adsorption By Powders And Porous Solids: Principles Methodology And Applications, Academic Press, San Diego, (1999)Google Scholar
16. Park, J.Y., Kang, W.H. and Hwang, I., Env. Eng. Sci., 23 (1), 133140 (2006)Google Scholar