No CrossRef data available.
Published online by Cambridge University Press: 17 March 2011
Photo-acid generator (PAG) is the key component responsible for the increased sensitivity of chemically amplified resists in use today for microelectronics production. Concentration variation of PAG through the thickness of the photoresist film adversely affects materialís performance. To offset reduced acid concentration at the bottom of the resist, we have developed adhesion promoting photo acid generators, called as a class “APPAG” that enhance acid concentration at interface between the resist and the substrate. An overview on the preparation and characterization of two siloxane based APPAG materials along with a performance comparison of commercial DUV and EUV resists on APPAG is provided. Longer diffusion length photo-acid generator (APPAG 9) retained square profile of critical dimension (CD) at off-focus values and was found to give nearly a 50% improvement in depth of focus for 250nm node DUV lithography. For EUV lithography, both shorter diffusion length APPAG 6 and APPAG 9 were shown to substantially improve performance envelope for 100nm dense lines and spaces at reduced post exposure bake (PEB).