Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-20T08:52:40.287Z Has data issue: false hasContentIssue false

Adhesion Between Anti-EphA2 Antibody-Coated AFM Tips and Breast Cancer Cells

Published online by Cambridge University Press:  31 January 2011

Emily Paetzell
Affiliation:
[email protected], Princeton University, Department of Mechanical and Aerospace Engineering, Princeton, New Jersey, United States
Andrew Bogorad
Affiliation:
[email protected], Princeton University, Department of Physics, Princeton, New Jersey, United States
Juan Meng
Affiliation:
[email protected], Princeton University, Department of Mechanical and Aerospace Engineering, Princeton, New Jersey, United States
Winston oluwole Soboyejo
Affiliation:
[email protected]@aol.com, Princeton University, Department of Mechanical and Aerospace Engineering, Princeton, New Jersey, United States
Get access

Abstract

This paper presents the results of atomic force microscope (AFM) measurements of the adhesion force between MDA-MB-231 breast cancer cells and anti-EphA2 antibody-coated AFM tips. As a control, the adhesive interactions are measured between Hs578Bst normal breast cells and anti-EphA2 antibody-coated AFM tips. The measurements show conclusively that the adhesive forces to breast cancer cells are over five times greater than those to normal breast cells. The increase is attributed largely to the interactions between anti-EphA2 antibody and over-expressed EphA2 receptors that are revealed by the staining of receptor-ligand interactions. The implications of the results are discussed for the localized targeting and treatment of cancer with antibody-conjugated nanoparticles.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1(American Cancer Society (ACS), Atlanta, GA, 2009).Google Scholar
2 Artemov, D. Mori, N. Okollie, B. and Bhujwalla, Z. M. Magn Reson Med 49 (3), 403408 (2003).Google Scholar
3 Moore, A. Medarova, Z. Potthast, A. and Dai, G. Cancer Res 64 (5), 18211827 (2004).Google Scholar
4 Leuschner, C. Kumar, C. S. Hansel, W. Soboyejo, W. Zhou, J. and Hormes, J. Breast Cancer Res Treat 99 (2), 163176 (2006).Google Scholar
5 Simberg, D. Duza, T. Park, J. H. Essler, M. Pilch, J. Zhang, L. Derfus, A. M. Yang, M. Hoffman, R. M. Bhatia, S. Sailor, M. J. and Ruoslahti, E. Proc Natl Acad Sci U S A 104 (3), 932936 (2007).Google Scholar
6 Ireton, R. C. and Chen, J. Curr Cancer Drug Targets 5 (3), 149157 (2005).Google Scholar
7 Fox, B. P. and Kandpal, R. P. Biochem Biophys Res Commun 318 (4), 882892 (2004).Google Scholar
8 Zelinski, D. P. Zantek, N. D. Stewart, J. C. Irizarry, A. R. and Kinch, M. S. Cancer Res 61 (5), 23012306 (2001).Google Scholar
9 Noblitt, L. W. Bangari, D. S. Shukla, S. Knapp, D. W. Mohammed, S. Kinch, M. S. and Mittal, S. K. Cancer Gene Ther 11 (11), 757766 (2004).Google Scholar
10 Jackson, D. Gooya, J. Mao, S. Kinneer, K. Xu, L. Camara, M. Fazenbaker, C. Fleming, R., Swamynathan, S. Meyer, D. Senter, P. D. Gao, C. Wu, H. Kinch, M. Coats, S. Kiener, P. A. and Tice, D. A. Cancer Res 68 (22), 93679374 (2008).Google Scholar
11 Scarberry, K. E. Dickerson, E. B. McDonald, J. F. and Zhang, Z. J. J Am Chem Soc 130 (31), 1025810262 (2008).Google Scholar
12 Florin, E. Moy, V. and Gaub, H. Science 264 (5157), 415417 (1994).Google Scholar
13 Hinterdorfer, P. Baumgartner, W. Gruber, H. J. Schilcher, K. and Schindler, H. Proceedings of the National Academy of Sciences of the United States of America 93 (8), 34773481 (1996).Google Scholar
14 Gunning, A. P. Chambers, S. Pin, C. Man, A. L. Morris, V. J. and Nicoletti, C. FASEB J 22 (7), 23312339 (2008).Google Scholar
15 Li, F. Redick, S. D. Erickson, H. P. and Moy, V. T. Biophys J 84 (2 Pt 1), 12521262 (2003).Google Scholar
16 Zhang, X. Wojcikiewicz, E. and Moy, V. T. Biophys J 83 (4), 22702279 (2002).Google Scholar
17 Meng, J. PhD. Thesis, Princeton University, 2009.Google Scholar
18 Wolf, K. V. Zong, Z. Meng, J. Orana, A. Rahbar, N. Balss, K. M. Papandreou, G. Maryanoff, C. A. and Soboyejo, W. J Biomed Mater Res A 87 (1), 272281 (2008).Google Scholar
19 Hutter, J. L. and Bechhoefer, J. Review of Scientific Instruments 64 (7), 18681873 (1993).Google Scholar
20 Matei, G. A. Thoreson, E. J. Pratt, J. R. Newell, D. B. and Burnham, N. A. Review of Scientific Instruments 77 (8), 083703 (2006).Google Scholar
21 Shahin, V. Ludwig, Y. Schafer, C. Nikova, D. and Oberleithner, H. J Cell Sci 118 (Pt 13), 28812889 (2005).Google Scholar