Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-29T09:42:29.521Z Has data issue: false hasContentIssue false

Active hybrid materials by nanoscale chemistry

Published online by Cambridge University Press:  01 February 2011

Jean-Pierre Boilot
Affiliation:
LPMC, UMR CNRS 7643, Ecole Polytechnique, 91128 Palaiseau France
Sophie Besson
Affiliation:
LPMC, UMR CNRS 7643, Ecole Polytechnique, 91128 Palaiseau France LSVI CNRS/Saint-Gobain, UMR CNRS 125, 39 quai Lucien Lefranc, 93303 Aubervilliers France
Valerie Buissette
Affiliation:
LPMC, UMR CNRS 7643, Ecole Polytechnique, 91128 Palaiseau France
Thierry Gacoin
Affiliation:
LPMC, UMR CNRS 7643, Ecole Polytechnique, 91128 Palaiseau France
Arnaud Huignard
Affiliation:
LPMC, UMR CNRS 7643, Ecole Polytechnique, 91128 Palaiseau France
Christian Ricolleau
Affiliation:
LMCP, UMR CNRS 7590, Universités Paris 6 et 7, 4 place Jussieu, 75252 Paris France
Get access

Abstract

We present different arrangments of hybrid nano-objects for optical applications:

- Highly concentrated luminescent colloids (II-VI quantum dots, YVO4:Ln) are prepared and stabilized through the grafting of organic molecules at their surface. These nanocrystals can further be used for the synthesis of well defined nanomaterials. For instance, highly luminescent transparent films for integrated optics are obtained by using YVO4:Ln nanocrystal- silica composites.

- 3D random networks of quantum dots are prepared by gelation of colloids. As in the silica system, the transparent percolating structure can be described as homogeneous assemblies of fractal clusters whose sizes are inferior to visible-range wavelength.

- 3D ordered arrays of quantum dots are prepared by a confined growth of nanocrystals in mesoporous silica films. Using these templates, the 3D ordering of nanoparticles can be extended at a large scale on different substrates. These high density arrangments of nanocrystals are required in different applications such as nonlinear optics or semiconductor lasers.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Shipway, A. N. Katz, E. Willner, I. Chemphyschem, 1, 18 (2000)Google Scholar
2. Herron, N. Wang, Y. Eckert, H. J. Am. Chem. Soc., 112, 1322 (1990), Y. Nosaka, N. Otha, T. Fukuyama, N.Fujii, J. Colloid Interf. Sc., 155, 23 (1993), A. Fojtik, H. Weller, A. Henglein, Ber. Bunsen-Ges. Phys. Chem., 88, 969 (1984), C.B. Murray, D.J. Norris, M.G. Bawendi, J. Am. Chem. Soc., 115, 8706 (1993), P. Lianos, J.K. Thomas, Chem. Phys. Lett., 125, 299 (1986).Google Scholar
3. Counio, G. Esnouf, S. Gacoin, T. and Boilot, J-P., J. Phys. Chem B 102, 5257 (1998).Google Scholar
4. Norris, D.J. Yao, N. Charnock, F.T. Kennedy, T.A. Nano Lett., 1, 3 (2001).Google Scholar
5. Huignard, A. Buissette, V. Laurent, G. Gacoin, T. Boilot, J-P. Chem. Mater., 14, 2264 (2002).Google Scholar
6. Schwarz, Z. Anorg. Allg. Chem., 322, 143 (1963).Google Scholar
7. Touboul, M. Popot, A. A. Rev. Chim. Minér., 22, 610 (1985).Google Scholar
8. The handbook of IR and Raman characteristic frequencies of organic molecules, Lin-Vien, D. et al., Academic Press, 137, (1991).Google Scholar
9. Riwotzki, K. Haase, M. J. Phys. Chem. B 102, 10129, (1998).Google Scholar
10 Huignard, A. Gacoin, T. Boilot, J-P., Chem. Mat. 12(4), 1090 (2000).Google Scholar
11. Brecher, C. Samelson, H.; Lempicki, A. Riley, R. Peters, T. Phys. Rev., 155(2), 178 (1967).Google Scholar
12. Uitert, L.G. Van, Johnson, L.F.; J.Chem.Phys., 44(9), 3514 (1966).Google Scholar
13. Stein, G. Würzberg, E., J.Chem.Phys., 62(1), 208 (1975).Google Scholar
14. Philipse, A.P. Nechifor, A., Pathmamanoharan, C. Langmuir 10, 4451 (1991).Google Scholar
15. Huignard, A. Gacoin, T. Chaput, F. Boilot, J-P., Aschehoug, P. Viana, B. Mat. Res. Symp Proc., 667, G4.5.1. (2001).Google Scholar
16. Wang, Y. Herron, N. Phys. Rev. B, 42, 7253 (1990)Google Scholar
17. Gacoin, T. Malier, L. Boilot, J-P., J. Mater. Chem. 7(6), 859 (1997) and Chem. Mat. 9(7), 1502 (1997).Google Scholar
18. Gacoin, T. Lahlil, K. Larregaray, P. Boilot, J-P., J. Phys. Chem. B, 105, 42, 10228 (2001).Google Scholar
19. Teixeira, J. J. Appl.Cryst., 21, 781, (1988).Google Scholar
20. Vacher, R. Woignier, T. Pelous, J. Courtens, E. Phys. Rev. B 37, 11 6500 (1988).Google Scholar
21. Brinker, C.J. Scherrer, G.W. in “Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing”, Academic Press Ltd, London (1990).Google Scholar
22. Peng, X. Schlamp, M.C. Kadavanich, A.V. Alivisatos, A.P. J. Am. Chem. Soc., 119, 7019 (1998).Google Scholar
23. Besson, S. Gacoin, T. Jacquiod, C. Ricolleau, C. Babonneau, D. Boilot, J.-P. J. Mater. Chem., 10, 1331 (2000).Google Scholar
24. Besson, S. Ricolleau, C. Gacoin, T. Jacquiod, C. Boilot, J.-P. J. Phys. Chem. B, 104, 51, 12095 (2000).Google Scholar
25. Besson, S. Gacoin, T. Ricolleau, C. Jacquiod, C. Boilot, J.-P. to be published.Google Scholar
26. Besson, S. Gacoin, T. Ricolleau, C. Jacquiod, C. Boilot, J.-P. Nano-Letters, 2 (4), 409 (2002).Google Scholar
27. Iler, R. K. in The Chemistry of Silica, (Ed: Wiley-Interscience), 667676 (1979)Google Scholar
28. Besson, S. Gacoin, T. Ricolleau, C. Jacquiod, C. Boilot, J.-P. Mat. Res. Symp Proc., 704, (2002).Google Scholar