Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-25T15:20:35.869Z Has data issue: false hasContentIssue false

Activation Energy of Electromigration in Copper Thin Film Conductor Lines

Published online by Cambridge University Press:  15 February 2011

A. Gladkikh
Affiliation:
Department of Physical Electronics, Tel Aviv University, Tel Aviv 69987, Israel.
Y. Lereah
Affiliation:
Department of Physical Electronics, Tel Aviv University, Tel Aviv 69987, Israel.
M. Karpovski
Affiliation:
School of of Physics and Astronomy, Tel Aviv University, Tel Aviv 69987, Israel.
A. Palevski
Affiliation:
School of of Physics and Astronomy, Tel Aviv University, Tel Aviv 69987, Israel.
Yu. S. Kaganovskii
Affiliation:
Department of Physics, Bar-Ilan University, Ramat Gan 52900, Israel.
Get access

Abstract

Activation energy of electromigration damage was determined as 1.2 eV for Cu lines, indicating grain boundary paths for electromigrationo The surface diffusion was found to play a role during electromigration in Cu and impeded the failure process.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Pai, P.-L. and Ting, C.H., IEEE Electron Dev. Lett. 10, 423 (1989).Google Scholar
2. Black, J.R., IEEE Trans. Electron. Devices 16, 338 (1969).Google Scholar
3. Masu, K., Hiura, Y., Tsubouchi, K., Ohmi, T. and Mikoshiba, N., Jap. J. Appl. Phys. 30, 3642 (1991).Google Scholar
4. Rodbell, K.P. and Koch, R.H., Phys. Rev. B 44, 1767 (1991).Google Scholar
5. Park, C.W. and Vook, R.W., Appl. Phys. Lett. 59, 175 (1991).Google Scholar
6. Kang, H.-K., Cho, J.S.H. and Wong, S.S., IEEE Electron Dev. Lett. 13, 448 (1992).Google Scholar
7. Nitta, T., Ohmi, T., Takewaki, T. and Shibata, T., J. Electrochem. Soc. 139, 922 (1992).Google Scholar
8. Ohmi, T. and Tsubouchi, K., Solid State Tech. 35, 47 (1992).Google Scholar
9. Hu, C.-K., Small, M.B. and Ho, P.S. in Materials Reliability in Microelectronics II, edited by Thompson, C.V. and Lloyd, J.R. (Mater. Res. Soc. Proc. 265, Pittsburgh, PA 1992), p. 171176.Google Scholar
10. Nitta, T., Ohmi, T., Hoshi, T., Sakai, S., Sakaibara, K., Imai, S. and Shibata, T., J. Electrochem. Soc. 140, 1137 (1993).Google Scholar
11. Tao, J., Cheung, N.W. and Hu, C., IEEE Electron Device Lett. 14, 249 (1993).Google Scholar
12. Park, C.W. and Vook, R.W., Thin Solid Films 226, 238 (1993).Google Scholar
13. Lee, K.L., Hu, C.-K. and Tu, K.N., J. Appl. Phys. 78, 4228 (1995).Google Scholar
14. Jo, B.H. and Vook, R.W., Appi. Surf. Sci. 89, 237 (1995).Google Scholar
15. Hu, C.-K. and Luther, B., Mater. Chem. Phys. 41, 1 (1995).Google Scholar
16. Jo, B.H. and Vook, R.W., Thin Solid Films 262, 129 (1995).Google Scholar
17. Hu, C.-K., Luther, B., Kaufman, F.B., Hummel, J., Uzoh, C. and Pearson, D.J., Thin Solid Films 262, 84 (1995).Google Scholar
18. Lloyd, J.R. and Clement, J.J., Thin Solid Films 262, 135 (1995).Google Scholar
19. Thompson, C.V. and Cho, J., IEEE Electron Device Lett. 7, 667 (1986).Google Scholar
20. Rosenberg, R. and Berenbaum, L., Appl. Phys. Lett. 12, 201 (1968).Google Scholar