Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-29T08:17:19.783Z Has data issue: false hasContentIssue false

Actinide Speciation in Spent Fuel Leaching Studies

Published online by Cambridge University Press:  21 February 2011

Gregory R. Choppin*
Affiliation:
Department of Chemistry, Florida State University, Tallahassee, Florida 32306
Get access

Abstract

The uranium and plutonium chemistry relevant for spent fuel leach studies is discussed. Model calculations are evaluated by comparison with the results of spent UO2 fuel leaching obtained in the Swedish SKB program. The thermodynamic data were found to agree sufficiently with the measured solution concentrations that it can be assumed that in oxic natural waters, leachate uranium from spent fuel would be uranyl carbonate complexes in the solution (or hydroxo complexes in the absence of carbonate) while schoepite would be the solubility limiting solid. For plutonium, PuO2+ would be the solution species and Pu(OH)4 the solubility limiting solid.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Forsyth, R. S., Svanberg, K., and Werme, L. O., in: Scientific Base for Nuclear Waste Management - VII, Ed. McVay, G. L. (Elsevier Science Publishers, New York, 1984) p. 179.Google Scholar
2. Bruno, J., Forsyth, R. S., and Werme, L. O., in: Scientific Base for Nuclear Waste Management - VIII, Ed. Jantzen, C. M., Stone, J. and Ewing, R. C. (Materials Research Society, Pittsburgh, 1985) p. 413.Google Scholar
3. Eklund, U. B. and Forsyth, R. S., KBS Technical Report No. 70, Stockholm, Sweden (1978).Google Scholar
4. Vandergraaf, T. T., Report TR-IOO, AECL Whiteshell Nuclear Res. Est., Pinawa, Manitoba, Canada (1980).Google Scholar
5. Jonson, L. H., Report AECL-6837, AECL Whiteshell Nuclear Res. Est., Pinawa, Manitoba, Canada (1982).Google Scholar
6. Wilson, C. N. and Oversby, V. M., in: Waste Management 85, Ed. Post, R. G. (Tucson, 1985) p. 497.Google Scholar
7. Norris, A. E., Report ONWI/SUB/79/ESll-01200-11 (1979).Google Scholar
8. Forsyth, R. S., Werme, L. O., and Bruno, J., J. Nucl Mat., 138 (1986) 1.Google Scholar
9. Langmuir, D., Geochim. Cosmochim. Acta, 42 (1978) 547.Google Scholar
10. Lemire, R. and Tremaine, P., J. Chem. Eng. Data, 25 (1980) 361.Google Scholar
11. Baes, C. F. and Mesmer, R. E., “The Hydrolysis of Cations”, J. Wiley and Sons, New York, 1976.Google Scholar
12. Choppin, G. R. and Rao, L. F., Radiochim. Acta, 37 (1984) 143.Google Scholar
13. Mathur, J. N. and Choppin, G. R., Radiochim. Acta, in press.Google Scholar
14. Choppin, G. R. and Allard, B., in Handbook of the Chemistry and Physics of the Actinides, Vol. III, Ed. Freeman, A. J. and Keller, C., Elsevier, Amsterdam, 1985, Chapter 11.Google Scholar
15. Orlandini, K. A., Penrose, W. R., and Nelson, D. M., Marine Chem., 18 (1986) 49.Google Scholar
16. Nitsche, H. and Edelstein, N. M., Radiochem. Acta, 39 (1985) 23.Google Scholar
17. Fukai, R., Yamoto, A., Thain, M., and Bilinski, H., Geochem., 21 (1987) 51.Google Scholar
18. Choppin, G. R., in “ldquo;Plutonium Chemistry”, ACS Sym. Ser. No. 216, Eds. Carnall, W. T. and Choppin, G. R., Am. Chem. Soc., Washington, D.C., 1983.Google Scholar
19. Werme, L. O., Private Communication, SKB.Google Scholar
20. Silva, R., Private Communication on EQ 3/6, Lawrence Livermore National Laboratory.Google Scholar
21. Kim, J.-I., “Basic Actinide and Fission Products Chemistry“, RCM 02085, Tech. Univ. Munchen, May, 1985.Google Scholar