Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T02:25:04.716Z Has data issue: false hasContentIssue false

Actinide Migration in Granite Fractures: Comparison between In-Situ and Laboratory Results

Published online by Cambridge University Press:  11 February 2011

Bernhard Kienzler
Affiliation:
Institut für Nukleare Entsorgung, Forschungszentrum Karlsruhe, D-76021 Karlsruhe, GERMANY
Jürgen Römer
Affiliation:
Institut für Nukleare Entsorgung, Forschungszentrum Karlsruhe, D-76021 Karlsruhe, GERMANY
Peter Vejmelka
Affiliation:
Institut für Nukleare Entsorgung, Forschungszentrum Karlsruhe, D-76021 Karlsruhe, GERMANY
Mats Jansson
Affiliation:
Dept. of Nuclear Chemistry, Royal Institute of Technology, SE-100 44 Stockholm, SWEDEN
Trygve E. Eriksen
Affiliation:
Dept. of Nuclear Chemistry, Royal Institute of Technology, SE-100 44 Stockholm, SWEDEN
Kastriot Spahiu
Affiliation:
Svensk Kärnbränslehantering AB (SKB), SE-102 40 Stockholm, SWEDEN
Get access

Abstract

Results of migration experiments with fractured drill cores performed in laboratory and in the CHEMLAB 2 probe under in-situ conditions at Äspö HRL are presented. Drill cores for both experiments are prepared by the same method and provide similar hydraulic properties. As tracers, actinides Am(III), Pu(IV) and Np(V) are applied. Breakthrough of Np is found to be unre-tarded in comparison to inert HTO tracer. Recovery of Np amounts to less than 40%. Am and Pu are not eluted from the cores. Lower limits of the retardation factor of 135 are calculated for both Am and Pu. Post mortem investigations of the fractured cores are performed by cutting perpendicular to the cylinder axis and subsequent chemical and radiochemical analysis of abraded material and slices. Imaging of the slices reveals the geometry of the flow path. α-radiography of the slices shows similar distribution patterns of Np and Am. It is shown by TTA extraction that Np bound onto the slices is in the tetravalent state. Hence, Np(V) undergoes reduction during migration. Retention of Am and Np is attributed to different processes.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bäckblom, G., The Äspö hard rock laboratory - a step towards the Swedish final repository for high-level radioactive waste. Tunnelling and Underground Space Technology 4, 463467 (1991).Google Scholar
2. Jansson, Mats, Erikson, , Trygve, E., CHEMLAB In-Situ Diffusion Experiments Using Radioactive Tracers, Radiochimica Acta 82, 153156 (1998).Google Scholar
3. Vejmelka, P., Fanghänel, Th., Kienzler, B., Korthaus, E., Römer, J., Schüβler, W., Artinger, R., Sorption and migration of radionuclides in granite (HRL ÄSPÖ, Sweden). Forschungszentrum Karlsruhe, FZKA 6488 (2000).Google Scholar
4. Vejmelka, P., Kienzler, B., Römer, J., Marquardt, Ch., Soballa, E., Geyer, F., Kisely, T., Heathman, D., Actinide migration experiment in the HRL ÄSPÖ, Sweden: Results of laboratory and in-situ experiments (Part I). Forschungszentrum Karlsruhe, FZKA 6652 (2001).Google Scholar
5. Kienzler, B., Vejmelka, P., Römer, J., Fanghänel, E., Jansson, M., Eriksen, T. E., Wikberg, P., Swedish-German actinide migration experiment at Äspö hard rock laboratory, Cont. Hydrol. 61, 219– 233 (2003).Google Scholar
6. Römer, J., Kienzler, B., Vejmelka, P., Soballa, E., Görtzen, A., Fuβ, M., Actinide migration experiment in the HRL ÄSPÖ, Sweden: Results of laboratory and in-situ experiments (Part II). Forschungszentrum Karlsruhe, FZKA 6770 (2002).Google Scholar