Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-24T14:14:29.768Z Has data issue: false hasContentIssue false

Acetaldehyde Photocatalytic Decomposition over Nanostructured TiO2 Sol-Gel Catalysts

Published online by Cambridge University Press:  01 February 2011

S. Castillo
Affiliation:
Instituto Mexicano del Petróleo, Programa de Ingeniería Molecular, D.F. México Universidad Autónoma Metropolitana-A, Dept. Quim. México D.F., 02200 Universidad Autónoma Metropolitana-I, Dept. Quim. A.P. 55-534, México, D.F., 09340
R. Camposeco
Affiliation:
Instituto Mexicano del Petróleo, Programa de Ingeniería Molecular, D.F. México Universidad Autónoma Metropolitana-A, Dept. Quim. México D.F., 02200 Universidad Autónoma Metropolitana-I, Dept. Quim. A.P. 55-534, México, D.F., 09340
R. Carrera
Affiliation:
Instituto Mexicano del Petróleo, Programa de Ingeniería Molecular, D.F. México Departamento de Ingeniería Química, ESIQIE-IPN, AP. 75-876, D.F. México Universidad Autónoma Metropolitana-I, Dept. Quim. A.P. 55-534, México, D.F., 09340
M. Mujica
Affiliation:
Instituto Mexicano del Petróleo, Programa de Ingeniería Molecular, D.F. México Universidad Autónoma Metropolitana-I, Dept. Quim. A.P. 55-534, México, D.F., 09340
P.Del Ángel
Affiliation:
Instituto Mexicano del Petróleo, Programa de Ingeniería Molecular, D.F. México Universidad Autónoma Metropolitana-I, Dept. Quim. A.P. 55-534, México, D.F., 09340
J.A. Montoya
Affiliation:
Instituto Mexicano del Petróleo, Programa de Ingeniería Molecular, D.F. México Universidad Autónoma Metropolitana-I, Dept. Quim. A.P. 55-534, México, D.F., 09340
A.L. Vázquez
Affiliation:
Instituto Mexicano del Petróleo, Programa de Ingeniería Molecular, D.F. México Departamento de Ingeniería Química, ESIQIE-IPN, AP. 75-876, D.F. México Universidad Autónoma Metropolitana-I, Dept. Quim. A.P. 55-534, México, D.F., 09340
M. Morán-Pineda
Affiliation:
Instituto Mexicano del Petróleo, Programa de Ingeniería Molecular, D.F. México Universidad Autónoma Metropolitana-I, Dept. Quim. A.P. 55-534, México, D.F., 09340
R. Goméz
Affiliation:
Departamento de Ingeniería Química, ESIQIE-IPN, AP. 75-876, D.F. México Universidad Autónoma Metropolitana-I, Dept. Quim. A.P. 55-534, México, D.F., 09340
Get access

Abstract

TiO2nanoparticles were synthesized by the Sol-Gel method by using 2-propanol as solvent in acid medium (pH1). The samples were annealed at 200 and 500°C and were characterized by BET, XRD-Rietveld refinements, TEM and FTIR. The activity was evaluated by the acetaldehyde photodecomposition in an isolated chamber with an initial concentration of contaminant of 300 ppmv with oxygen (2%) assisted with a 365-nm UV lamp. The test results were compared with those obtained with a commercial catalyst (P25). Improved photoactivity (≍100 % of acetaldehyde in 150 min) was obtained with catalysts annealed at 200°C (TiO2-P-200°C), that showed nanoparticles (≍7 nm) and abundant anatase phase (≍ 63 %) coexist with the brookite phase (≍ 37 %), as well as irregular equiaxial morphology. The samples annealed at 500°C (TiO2-P-500°C), showed an increment in nanoparticles (≍22 nm), different ratio and phase composition (anatase-brookite-rutile), and therefore less activity (≍80 %). This high activity could be explained by the special ratio of anatase-brookite and the dimension of nanometric crystal size. The aforementioned characteristics could be useful in the degradation of reactive organic gases like acetaldehyde either in confined spaces or in the open air.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Kim, C. S., Okuyama, K., Nakaso, K. and Shimada, M., (2004) “Direct Measurement of Nucleation and Growth Modes in Titania Nanoparticles Generation by a CVD MethodJ. Chem. Eng. Jpn 37: 13791389.Google Scholar
[2] Mergel, D., Buschendorf, D., Eggert, S., Grammes, R., Samset, B., (2000) “Density and refractive index of TiO2 films prepared by reactive evaporationThin Solid Films 371: 218224.Google Scholar
[3] Fujishima, A., Zhang, C.R., (2000) “Titanium dioxide photocatalysis: present situation and future approachesChimie 9: 750760.Google Scholar
[4] Anpo, M., “Utilization of TiO2photocatalysts in green chemistry” (2000) Pure Appl. Chem. 72: 12651270.Google Scholar
[5] Hashimoto, K., Irie, H., Fujishima', A. (2005) “TiO2 Photocatalysis: A Historical Overview and Future ProspectsJap. J. Appl. Phys. 44: 82698285.Google Scholar
[6] Ahonen, P.P., Kauppmen, E.I., Journet, J.C., Deschanvres, J.L., Tendeloo, G.J. Van, (1999) “Preparation of nanocrystalline titania powder via aerosol pyrolysis of titanium tetrabutoxideMater Res 14: 39383948.Google Scholar
[7] Depero, L.E., Marino, A., Allieri, B., Bontempi, E., Sangaletti, L., Casale, C., Notaro, M., (2000) “Morphology and microstructural properties of TiO2 nanopowders doped with trivalent Al and Ga cations” J. Mater. Res.: 20802086.Google Scholar
[8] Yang, J., Mei, S., Ferreira, J.M.F., (2001) “Hydrothermal synthesis of nanosized titania powders: influence of tetraalkyl ammonium hydroxides on particle characteristicsJ. Amer. Ceram. Soc. 84:16961702.Google Scholar
[9] Mayadevi, S., Kulkarni, S.S., Patil, A.J., Shinde, M.H., Potdar, H.S., Deshpande, S.B., Date, S. K., (2000) “Chemically precipitated titania for membrane applications – effect of heat treatment and fabrication conditions on its performanceJ. Mater. Sci. 35: 39433949.Google Scholar
[10] Zhu, Y. H., Zhang, L., Gao, C., Cao, L., (2000) “The synthesis of nanosized TiO2 powder using a sol-gel method with TiCl4 as a precursorJ. Mat. Sci. 35: 40494054.Google Scholar
[11] Nakagawa, Y., Grigoriu, C., Masugata, K., Jiang, W., Yatsui, K. (1998) “Synthesis of TiO2 and TiN nanosize powders by intense light ion-beam evaporationJ. Mater. Sci. 33: 529533.Google Scholar
[12] Zhang, Y. H., Chan, C.K., Porter, J.F., Guo, W., (1998) “Micro-Raman spectroscopic characterization of nano-sized TiO2 powders prepared by vapor hydrolysisJ. Mater. Res. 13: 26022609.Google Scholar
[13] Cao, L., Gao, Z., Suib, S.L., Obee, T.N., Steven, O.H., Freihaut, J.D., (2000) “Photocatalytic Oxidation of Toluene on Nanoscale TiO2 Catalysts: Studies of Deactivation and RegenerationJ Catal 196: 253261.Google Scholar
[14] Benoit-Marquie, F., Wilkenhoner, U., Simon, V., Braun, A., Oliveros, E., Maurette, M.T., (2000) “VOC photodegradation at the gas-solid interface of a TiO2 photocatalyst - Part I: 1-butanol and 1-butylamineJ Photochem. and Photobiol. A: Chem 132: 225232.Google Scholar
[15] Castillo, S., Gómez, R., Morán-Pineda, M., (2003) “Effect of sol-gel derived Al2O3-ZrO2 and Al2O3-TiO2 oxides on the selectivity of NO reduction by CO under oxidizing conditionsReact. Kinet. Catal. Lett. 79: 217279.Google Scholar
[16] Rodríguez-Carbajal, J. (1993) “Determination of the crystallized fractions of a largely amorphous multiphase material by the Rietveld methodJ. Phys. B 192: 5569.Google Scholar
[17] Orlhac, X., Fillet, C., Deniard, P., Dulac, A.M., Brec, R., (2001) “Determination of the crystallized fractions of a largely amorphous multiphase material by the Rietveld methodAppl. Cryst. 34: 114118.Google Scholar
[18] Fuentes, L., (1998) Análisis de minerales y el método de Rietveld, México, Sociedad Mexicana de Cristalografía, pp.78.Google Scholar
[19] Reid, J.W., Hendry, J.A., (2006) “Rapid, accurate phase quantification of multiphase calcium phosphate materials using Rietveld refinementAppl. Cryst. 39: 536543.Google Scholar
[20] Castillo, S., Morán-Pineda, M., Molina, V., Gómez, R., López, T., (1998) “Catalytic reduction of nitric oxide on Pt and Rh catalysts supported on alumina and titania synthesized by the sol-gel methodAppl. Catal. B: Environ 15: 203209.Google Scholar
[21] Wang, J.A., Cuan, A., Salmones, J., Nava, N., Castillo, S., Morán-Pineda, M., Rojas, F., (2004), “Studies of sol-gel TiO2 and Pt/TiO2 catalysts for NO reduction by Co in a oxygen-rich condition”, Appl. Surf. Sci. 230, 94105.Google Scholar
[22] Song, S.H., Wang, X., Xiao, P., (2002) “Synthesis of nanosized rutile TiO2 powder at low temperatureMate.r Chem. Phys. 77: 314317.Google Scholar
[23] Wang, J.A., Lima-Ballesteros, R., López, T., Moreno, A., Gómez, R., Novaro, O., Bokhimi, X. (2001) “Quantitative determination of titanium lattice defects and solid state reaction mechanism in iron-doped TiO2 photocatalystsJ. Phys. Chem. B 105: 96929698.Google Scholar
[24] Ovenstone, J., (2001) “Preparation of novel titania photocatalysts with high activityJ. Mater. Sci. 36: 13251329.Google Scholar
[25] Radhica, C., Burtrand, B. Lee, I., (2007) “Experimental variables in the synthesis of brookite phase TiO2 nanoparticles”, Materials Science and Engineering A, 467, 146149.Google Scholar
[26] Gribb, A.A., Banfield, J.F., (1997) “Particle size effects on transformation kinetics and phases stability in nanocrystalline TiO2”, Am. Mineral, 82, 717728.Google Scholar
[27] Zhu, Ke-Rong, Zhang, Ming-Sheng, Hong, Jian-Ming, Yin, Zhen, (2005) “Size effect on phase transition sequence of TiO2 nanocrystal”, Matter. Sci. Eng. A, 403, 8793.Google Scholar
[28] Diebold, Ulrike, (2003) “The surface science of titanium dioxide”, Surf. Sci. Reports, 48, 53229.Google Scholar