Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T01:58:41.841Z Has data issue: false hasContentIssue false

Acceptor Dopants in Bulk and Nanoscale ZnO

Published online by Cambridge University Press:  07 December 2012

Matthew D. McCluskey
Affiliation:
Department of Physics and Astronomy, Washington State University Pullman, WA 99164-2814, U.S.A.
Marianne C. Tarun
Affiliation:
Department of Physics and Astronomy, Washington State University Pullman, WA 99164-2814, U.S.A.
Samuel T. Teklemichael
Affiliation:
Department of Physics and Astronomy, Washington State University Pullman, WA 99164-2814, U.S.A.
Get access

Abstract

Zinc oxide (ZnO) is a semiconductor that emits bright UV light, with little wasted heat. This intrinsic feature makes it a promising material for energy-efficient white lighting, nano-lasers, and other optical applications. For devices to be competitive, however, it is necessary to develop reliable p-type doping. Although substitutional nitrogen has been considered as a potential p-type dopant for ZnO, recent theoretical and experimental work suggests that nitrogen is a deep acceptor and will not lead to p-type conductivity. In nitrogen-doped samples, a red photoluminescence (PL) band is correlated with the presence of deep nitrogen acceptors. PL excitation (PLE) measurements show an absorption threshold of 2.26 eV, in good agreement with theory. The results of these studies seem to rule out group-V elements as shallow acceptors in ZnO, contradicting numerous reports in the literature. Optical studies on ZnO nanocrystals show some intriguing leads. At liquid-helium temperatures, a series of sharp IR absorption peaks arise from an unknown acceptor impurity. The data are consistent with a hydrogenic acceptor 0.46 eV above the valence band edge. While this binding energy is still too deep for many practical applications, it represents a significant improvement over the 1.4-1.5 eV binding energy for nitrogen acceptors. Nanocrystals present another twist. Due to their high surface-to-volume ratio, surface states are especially important. In our model, the 0.46 eV level is shallow with respect to the surface valence band, raising the possibility of surface hole conduction.

Type
Articles
Copyright
Copyright © Materials Research Society 2012 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Pearton, S.J., Norton, D.P., Ip, K., Heo, Y.W., and Steiner, T., Journ. Vacuum Sci. Tech B 22, 932 (2004).CrossRefGoogle Scholar
Look, D.C., “Recent advances in ZnO materials and devices,” Mater. Sci. Engin. B 80, 383 (2001).CrossRefGoogle Scholar
Huang, M.H., Mao, S., Feick, H., Yan, H.Q., Wu, Y.Y., Kind, H., Weber, E., Russo, R., and Yang, P.D., Science 292, 1897 (2001).CrossRefGoogle Scholar
Chu, S., Wang, G., Zhou, W., Lin, Y., Chernyak, L., Zhao, J., Kong, J., Li, L., Ren, J. and Liu, J., Nature Nanotechnology 6, 506 (2011).CrossRefGoogle Scholar
Tang, Z.K., Wong, G.K.L., Yu, P., Kawasaki, M., Ohtomo, A., Koinuma, H., and Segawa, Y., Appl. Phys. Lett. 72, 3270 (1998).CrossRefGoogle Scholar
Zu, P., Tang, Z.K., Wong, G.K.L., Kawasaki, M., Ohtomo, A., Koinuma, H., and Segawa, Y., Solid State Commun. 103, 459 (1997).CrossRefGoogle Scholar
Minami, T., MRS Bulletin 25(8), 38 (2000).CrossRefGoogle Scholar
Dransfield, G.P., Radiat. Prot. Dosimetry 91, 271 (2000).CrossRefGoogle Scholar
Clarke, D.R., Journal of the American Ceramic Society 82, 485 (1999).CrossRefGoogle Scholar
Wager, J.F., Science 300, 1245 (2003).CrossRefGoogle Scholar
Ntep, J.M., Hassani, S.S., Lusson, A., Tromson-Carli, A., Ballutaud, D., Didier, G., and Triboulet, R., Journ. Crystal Growth 207, 30 (1999).CrossRefGoogle Scholar
Smith, J.W., Tokach, M.D., Goodband, R.D., Nelssen, J.L., and Richert, B.T., Journal of Animal Science 75, 1861 (1997).CrossRefGoogle Scholar
Jokela, S.J. and McCluskey, M.D., Phys. Rev. B 76, 193201 (2007).CrossRefGoogle Scholar
McCluskey, M.D. and Jokela, S.J., J. Appl. Phys. 106, 071101 (2009).CrossRefGoogle Scholar
Look, D.C. and Claflin, B., Phys. Stat. Sol. (b) 241, 624 (2004).CrossRefGoogle Scholar
Bierwagen, O., Ive, T., Van de Walle, C.G., and Speck, J.S., Appl. Phys. Lett. 93, 242108 (2008).CrossRefGoogle Scholar
Lyons, J.L., Janotti, A., and Van de Walle, C.G., Appl. Phys. Lett. 95, 252105 (2009).CrossRefGoogle Scholar
Lany, S. and Zunger, A., Phys. Rev. B 81, 205209 (2010).CrossRefGoogle Scholar
Tarun, M.C., Zafar Iqbal, M., and McCluskey, M.D., AIP Advances 1, 022105 (2011).CrossRefGoogle Scholar
Van de Walle, C.G. and Neugebauer, J., Nature 423, 626 (2003).CrossRefGoogle Scholar
Kiliç, Ç and Zunger, A., Appl. Phys. Lett. 81, 73 (2002).CrossRefGoogle Scholar
Wang, J., Liu, X.-L., Yang, A.-L., Zheng, G.-L., Yang, S.-Y., Wei, H.-Y., Zhu, Q.-S., and Wang, Z.-G., Appl. Phys. A 103, 1099 (2011).CrossRefGoogle Scholar
Lichti, R.L., Chow, K.H., and Cox, S.F.J., Phys. Rev. Lett. 101, 136403 (2008).CrossRefGoogle Scholar
Selim, F.A., Tarun, M.C., Wall, D.E., Boatner, L.A., and McCluskey, M.D., Appl. Phys. Lett. 99, 202109 (2011).CrossRefGoogle Scholar
Schirmer, O.F. and Zwingel, D., Solid State Commun. 8, 1559 (1970).CrossRefGoogle Scholar
Jokela, S.J., Tarun, M.C., and McCluskey, M.D., Physica B 404, 4801 (2009).CrossRefGoogle Scholar
Jaros, M., Phys. Rev. B 16, 3694 (1977).CrossRefGoogle Scholar
McCluskey, M.D., Johnson, N.M., Van de Walle, C.G., Bour, D.P., Kneissl, M., and Walukiewicz, W., Phys. Rev. Lett. 80, 4008 (1998).CrossRefGoogle Scholar
Lyons, J.L., Janotti, A., and Van de Walle, C.G., Phys. Rev. Lett. 108, 156403 (2012).CrossRefGoogle Scholar
Teklemichael, S. T., Hlaing Oo, W. M., McCluskey, M. D., Walter, E. D., and Hoyt, D. W., Appl. Phys. Lett. 98, 232112 (2011).CrossRefGoogle Scholar
Teklemichael, S. T. and McCluskey, M. D., Nanotechnology 22, 475703 (2011).CrossRefGoogle Scholar
Teklemichael, S. T. and McCluskey, M. D., J. Phys. Chem. C 116, 17248 (2012).CrossRefGoogle Scholar
Prades, J. D., Cirera, A., Morante, J. R., and Cornet, A., Thin Solid Films 515, 8670 (2007).CrossRefGoogle Scholar
Zhou, H., Alves, H., Hofmann, D.M., Kriegseis, W., Meyer, B.K., Kaczmarczyk, G., and Hoffmann, A., Appl. Phys. Lett. 80, 210 (2002).CrossRefGoogle Scholar
Norberg, N.S. and Gamelin, D.R., J. Phys. Chem. B 109, 20810 (2005).CrossRefGoogle Scholar
Kresse, G., Dulub, O., and Diebold, U., Phys. Rev. B 68, 245409 (2003).CrossRefGoogle Scholar
Reynolds, D. C., Look, D. C., Jogai, B., Litton, C. W., Collins, T. C., Harsch, W., and Cantwell, G., Phys. Rev. B 57, 12151 (1998).CrossRefGoogle Scholar
Matsumoto, T., Kato, H., Miyamoto, K., Sano, M., Zhukov, E. A., and Yao, T., Appl. Phys. Lett. 81, 1231 (2002).CrossRefGoogle Scholar
Zhang, Y., Lin, B., Sun, X., and Fu, Z., Appl. Phys. Lett. 86, 131910 (2005).CrossRefGoogle Scholar
Fonoberov, V. A., Alim, K. A., Balandin, A. A., Xiu, F., and Liu, J., Phys. Rev. B 73, 165317 (2006).CrossRefGoogle Scholar
Fallert, J., Hauschild, R., Stelzl, F., Urban, A., Wissinger, M., Zhou, H., Klingshirn, C., and Kalt, H., J. Appl. Phys. 101, 073506 (2007).CrossRefGoogle Scholar
Thonke, K., Gruber, Th., Teofilov, N., Schönfelder, R., Waag, A., and Sauer, R.. Physica B 308-310, 945 (2001).CrossRefGoogle Scholar
Wang, X., Yang, S., Yang, X., Liu, D., Zhang, Y., Wang, J., Yin, J., Liu, D., Ong, H. C., and Du, G., J. Cryst. Growth 243, 13 (2002).CrossRefGoogle Scholar