Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-24T07:23:36.211Z Has data issue: false hasContentIssue false

AC Field Induced Polarization Disordering in The Ferroelectric Phase Of Modified Pzt Ceramics

Published online by Cambridge University Press:  10 February 2011

Q. Tan
Affiliation:
Dept. of Materials Science and Engineering, Univ. of Illinois at Urbana-Champaign, 105 S. Goodwin Ave., Urbana, IL 61801
D. Viehland
Affiliation:
Dept. of Materials Science and Engineering, Univ. of Illinois at Urbana-Champaign, 105 S. Goodwin Ave., Urbana, IL 61801
Get access

Abstract

Pronounced nonlinear enhancements in dielectric responses and decreases in phase transformation temperatures were induced under moderate ac fields and high field cycling for La modified lead zirconate titanate (PZT) ceramics. Polarization disordering could be inhibited by introducing acceptor dopants into La modified PZT compositions and by DC bias field. Analysis of the frequency dispersion revealed that the field driven transformation in lower La content PZT is a field assisted activation process, while the transformation in higher La content PZT relaxors is intrinsically a thermal activated process.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Haertling, G. H. and Land, C. E., J.Am.Ceram.Soc. 54, 1 (1971).Google Scholar
2. Krueger, H. H. A. and Berlincourt, D., J.Acoust.Soc.Am. 33, 1339 (1961).Google Scholar
3. Randall, C., PhD Dissertation, University of Essex, Essex, Colchester, England, United Kingdom (1987).Google Scholar
4. Dai, X. H., Xu, Z. and Viehland, D., Phil.Mag. B 70, 33 (1994).Google Scholar
5. Li, J. F., Dai, X. H., Chow, A., and Viehland, D., J. Appl. Phys. 69, 7219 (1991).Google Scholar
6. Thomas, N. W., J. Appl. Chem. Solids 51, 1419 (1990).Google Scholar
7. Chaim, N. B., Brunstein, M., Grunberg, J. and Seidman, A., J.Appl.Phys. 45, 2398 (1974).Google Scholar
8. Arlt, G., Dederichs, H., and Herbeit, R., Ferroelectrics 74, 37 (1987).Google Scholar
9. Li, S., Cao, W. and Cross, L. E., J. Appl. Phys. 69, 7219 (1991).Google Scholar
10. Glazounov, A. E., Tagantsev, A. K., and Bell, A. J., Ferroelectrics 184, 271 (1996).Google Scholar
11. Tan, Q. and Viehland, D., Phys.Rev.B 53, 14105 (1996).Google Scholar
12. Tan, Q. and Viehland, D., J.Am.Ceram.Soc. 79, 2747 (1996).Google Scholar
13. Tan, Q. and Viehland, D., J.Appl.Phys. 81, 361 (1997).Google Scholar
14. Fulcher, G., J. AmCer.Soc. 8, 339 (1925).Google Scholar
15. Cross, L. E., Ferroelectrics 76, 241 (1987).Google Scholar
16. Viehland, D., Li, J. F., Jang, S. J., and Cross, L. E., Phys. Rev. B 43, 8316 (1991).Google Scholar
17. Westphal, V., Kleemann, W., and Glinchuk, M. D., Phys.Rev.Lett. 68, 847 (1992).Google Scholar