Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T02:11:53.555Z Has data issue: false hasContentIssue false

AC Conductivity of Crystalline Materials and Glasses Ascribed to ADWPs

Published online by Cambridge University Press:  10 February 2011

A. S. Nowick
Affiliation:
Materials Science Division, School of Mines, Columbia University, New York, NY 10027
A. V. Vaysleyb
Affiliation:
Materials Science Division, School of Mines, Columbia University, New York, NY 10027
H. Jain
Affiliation:
Materials Science Department, Lehigh University, Bethlehem, PA 18015
X. Lu
Affiliation:
Materials Science Department, Lehigh University, Bethlehem, PA 18015
Get access

Abstract

The behavior of the frequency dependence of the conductivity, σ(ω), of numerous crystalline materials and glasses is close to an ω1.0 dependence in the limit of low temperatures and/or high frequencies (referred to as the “nearly constant loss”, or NCL, regime). Detailed analysis of this behavior, including the frequency dependence of both ε′ and ε″, shows that it can be described phenomenologically as produced by a broad distribution of asymmetric double-well potentials (ADWPs) with low activation energies. In order to obtain an understanding of the atomic origins of such potentials, we investigate the composition dependence of this behavior in such materials as crystalline CeO2:1%Y3+ ceramics with variable [Y3+] and alkali germanate glasses with variable alkali concentration. The appearance of a discrete loss peak in CeO2: 1%Y3+ helps us understand the ADWPs as due to “off-symmetry” configurations that undergo wiggling motion between adjacent minimum-energy positions.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Jonscher, A. K., Dielectric Relaxation in Solids, Chelsea Dielectrics, London, 1983.Google Scholar
2. Elliott, S. R., Solid State Ionics 36, p,135 (1987).Google Scholar
3. Ngai, K. L., Rendell, R. W., Rajagopal, A. K. and Teitler, S., Ann. N Y Acad. Sci. 484, p. 150 (986).Google Scholar
4. Dyre, J. C., J.. Appl. Phys. 64, p. 2456 (1988).Google Scholar
5. Funke, K., Prog. Solid State Chem. 22, p.111 (1993).Google Scholar
6. Long, A. R., Adv. Phys. 31, p.553 (1982).Google Scholar
7. Elliott, S. R., Adv. Phys. 36, p. 135 (1987); Solid State Ionics 70/71, p. 27 (1994).Google Scholar
8. Angell, C. A., Chem. Rev. 90, p. 523 (1990).Google Scholar
9. Lira, B. S., Vaysleyb, A. V. and Nowick, A. S., Appl. Phys. A56, p.8 (1993).Google Scholar
10. Lu, X. and Jain, H., J. Phys. Chem. Solids 55, p. 1433 (1994).Google Scholar
11. Lu, X., Jain, H. and Kanert, O., J. Non-Cryst. Solids 172, p. 1436 (1994).Google Scholar
12. Lu, X., Jain, H., Kanert, O., Kuchler, R. and Dieckhofer, J., Phil. Mag. 70, p. 1045 (1994).Google Scholar
13. Lee, W. K., Liu, J. F. and Nowick, A. S., Phys. Rev. Lett. 67, p. 1559 (1991).Google Scholar
14. Pollak, M. and Geballe, T. H., Phys. Rev. 122, p. 1742 (1961).Google Scholar
15. Pollak, M. and Pike, G. E., Phys. Rev. Lett. 28, p.1449 (1972).Google Scholar
16. Macdonald, J. R., ed., Impedance Spectroscopy, Wiley Interscience, New York, 1987.Google Scholar
17. Bottcher, C. J. F. and Bordewijk, P., Theory of Electric Polarization, second edition, Elsevier Publ. Co., Amsterdam, 1978, Vol. II.Google Scholar
18. Nowick, A. S. and Berry, B.S., Anelastic Relaxation in Crystalline Solids, Academic Press, New York, 1972, Chapter 4.Google Scholar
19. Burns, A., Chryssikos, G. D., Tombari, E., Cole, R. H. and Risen, W. M., Phys. Chem. Glasses 30, p.264(1989).Google Scholar
20. Hsieh, C. H. and Jain, H., Proc. 13th Univ. Glass Science Conf., in press.Google Scholar
21. Nowick, A. S., Lim, B. S. and Vaysleyb, A. V., J. Non-Cryst. Solids 172–174, p. 1243 (1994).Google Scholar
22. Nowick, A. S. in Diffusion in Crystalline Solids, edited by Murch, G. E. and Nowick, A. S. (Academic Press, Orlando, 1984), Chapter 3.Google Scholar
23. Lee, W. K., Nowick, A. S. and Boatner, L. A., Adv. Ceramics 23, p. 387 (1987).Google Scholar
24. Day, D. E., J. Non-Cryst. Solids 21, p. 343 (1976).Google Scholar
25. Jain, H., Peterson, N. L. and Downing, H. L., J. Non-Cryst. Solids 55, p. 293 (1983).Google Scholar
26. Gilroy, K. S. and Phillips, W. A., Phil. Mag. B43, p.735 (1981).Google Scholar
27. Nowick, A. S., Fu, S. Q., Lee, W. K., Lim, B. S. and Scherban, T., Mat. Sci. Eng. B23, p19 (1994).Google Scholar
28. Gerhardt, R., Lee, W. K. and Nowick, A. S., J. Phys. Chem. Solids 48, p. 563 (1987).Google Scholar
29. Cormack, A. N., Catlow, C. R. A. and Nowick, A. S., J. Phys. Chem. Solids 50, p. 177 (1989).Google Scholar
30. Bersuker, I. B., The Jahn-Teller Effect and Vibronic Interactions, Plenum Press, New York, 1984.Google Scholar
31. Toulouse, J. and Nowick, A. S., J. Phys. Chem. Solids 46, p. 1285 (1985).Google Scholar
32. Ling, S. and Nowick, A. S., Phys. Rev. B 40, p. 3266 (1989).Google Scholar
33. Jain, H. and Lu, X., J. Non-Cryst. Solids, in press.Google Scholar