Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-27T02:16:50.587Z Has data issue: false hasContentIssue false

Abrasive Wear Resistance of Bulk Metallic Glasses

Published online by Cambridge University Press:  17 March 2011

A. Lindsay Greer
Affiliation:
Department of Materials Science & Metallurgy, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ, UK
Wha-Nam Myung
Affiliation:
Department of Physics, Chonnam National University, Kwangju 500-757, Korea
Get access

Abstract

This paper reviews work on the wear of metallic glasses in general, as well as reporting recent results on the abrasive wear of bulk metallic glasses. The distinctive mechanical properties of metallic glasses make their wear resistance of fundamental interest. Metallic glasses, and the partially or fully crystalline materials derived from them, can have very good resistance to sliding and abrasive wear. Standard wear laws are followed, with behaviour similar to that of conventional hardened alloys. The microhardness and abrasive wear resistance are measured for four bulk metallic glasses (based on La, Mg, Pd or Zr). The hardness and wear resistance correlate well with the Young's modulus of the glass.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Ozawa, K., Wakazuki, H. and Tanaka, K., IEEE Trans. Magn. 20, 425430 (1984).Google Scholar
2.Kohmoto, O., Ohya, K. and Ojima, T., IEEE Trans. Magn. 25, 4490 (1989).Google Scholar
3.Boswell, P. G., J. Mater. Sci. 14, 15051507 (1979).Google Scholar
4.Masumoto, T., Mater. Sci. Eng. A179–A180, 816 (1994).Google Scholar
5.Miyoshi, K. and Buckley, D. H., Thin Solid Films 118, 363373 (1984).Google Scholar
6.Andersen, P., Bφttiger, J., Dyrbye, K., Hutchings, I. M., Rutherford, K. L. and Wroblewski, A., Mater. Sci. Eng. A 226–228, 871873 (1997).Google Scholar
7.Grant, D. M., Green, S. M. and Wood, J. V., Acta Metall. Mater. 43, 10451051 (1995).Google Scholar
8.Green, S. M., Grant, D. M. and Wood, J. V., Mater. Sci. Eng. A 224, 2126 (1997).Google Scholar
9.Das, S. K., Norin, E. M. and Bye, R. L., in Rapidly Solidified Metastable Materials, edited by Kear, B. H. and Giessen, B. C., (Mater. Res. Soc. Proc. 28, North-Holland, New York, 1984) pp. 233237.Google Scholar
10.Vineberg, E. J., Ohriner, E. K., Whelan, E. P. and Stapleford, G. E. in Rapidly Solidified Crystalline Alloys, edited by Das, S. K., Kear, B. H. and Adam, C. M., (TMS, Warrendale, PA, 1985) pp. 301306.Google Scholar
11.Schwarz, W. and Warlimont, H., Mater. Sci. Eng. A 226–228, 10981101 (1997).Google Scholar
12.Spaepen, F., Acta Metall. 25, 407415 (1977).Google Scholar
13.Lowhaphandu, P., Ludrosky, L. A., Montgomery, S. L. and Lewandowski, J. J., Intermet. 8, 487492 (2000).Google Scholar
14.Greer, A. L., Karpe, N. and Bφttiger, J., J. Alloys Comp. 194, 199211 (1993).Google Scholar
15.Koike, J., Parkin, D. M. and Nastasi, M., J. Mater. Res. 5, 14141418 (1990).Google Scholar
16.Hutchings, I. M., Tribology: Friction and Wear of Engineering Materials, (Arnold, London, 1992).Google Scholar
17.Holm, R., Electrical Contacts, (Gerbers, Stockholm, 1948).Google Scholar
18.Archard, J. F., J. Appl. Phys. 24, 981988 (1953).Google Scholar
19.Alpas, A. T. and Embury, J. D., Wear 146, 285300 (1991).Google Scholar
20.Gloriant, T. and Greer, A. L., Nanostruct. Mater. 10, 389396 (1998).Google Scholar
21.Ozawa, K., Wakasuki, H. and Tanaka, K., IEEE Trans. Magn. 20, 425430 (1984).Google Scholar
22.Fu, X.-Y. and Rigney, D. A. in Bulk Metallic Glasses, edited by Inoue, A., Johnson, W. L. and Liu, C. T., (Mater. Res. Soc. Proc. 554, Pittsburgh PA, 1999) pp. 437442.Google Scholar
23.Wong, C. J. and Li, J. C. M., Wear 98, 4561 (1984).Google Scholar
24.Girerd, G., Guiraldenq, P. and Du, N., Wear 102, 233240 (1985).Google Scholar
25.Whang, S. H. and Giessen, B. C. in Rapidly Solidified Amorphous and Crystalline Alloys, edited by Kear, B. H., Giessen, B. C. and Cohen, M., (Mater. Res. Soc. Proc. 8, North- Holland, New York, 1982) pp. 301308.Google Scholar
26.Klinger, R. and Feller, H. G., Wear 86, 287297 (1983).Google Scholar
27.Moreton, R. and Lancaster, J. K., J. Mater. Sci. Lett. 4, 133137 (1985).Google Scholar
28.Dolezal, N. and Hausch, G. in Rapidly Quenched Metals, edited by Steeb, S. and Warlimont, H., (Elsevier, Amsterdam, 1985) pp. 17671770.Google Scholar
29.Gahr, K. H. Zum and Nöcker, H., Metall 35, 988995 (1981).Google Scholar
30.Gahr, K. H. Zum, Z. Metallk. 73, 267276 (1982).Google Scholar
31.Morris, D. G., J. Mater. Sci. 17, 17891794 (1982).Google Scholar
32.Li, S. and Wang, Y., Wear 147, 275284 (1991).Google Scholar
33.Miyoshi, K. and Buckley, D. H., Wear 110, 295313 (1986).Google Scholar
34.Lee, D.-H. and Evetts, J. E., Acta Metall. 32, 10351043 (1984).Google Scholar
35., Kishore, Sudarsan, U., Chandran, N., and Chattopadhyay, K., Acta Metall. 35, 14631473 (1987).Google Scholar
36.Fan, C., Takeuchi, A. and Inoue, A., Mater. Trans. JIM 40, 4251 (1999), 40.Google Scholar
37.Yokoyama, Y., Yamano, K., Fukaura, K., Sunada, H. and Inoue, A., Mater. Trans. JIM 40, 10151018 (1999).Google Scholar
38.Hays, C. C., Kim, C. P. and Johnson, W. L., Phys. Rev. Lett. 84, 29012904 (2000).Google Scholar
39.Kim, Y.-H., Inoue, A. and Masumoto, T., Mater. Trans. JIM 32, 331338 (1991).Google Scholar
40.Chen, H., He, Y., Shiflet, G. J. and Poon, S. J., Scripta Metall. Mater. 25, 14211424 (1991).Google Scholar
41.Zhong, Z. C., Jiang, X. Y. and Greer, A. L., Philos. Mag. 76, 505510 (1997).Google Scholar
42.Greer, A. L., Zhong, Z. C., Jiang, X. Y., Rutherford, K. L. and Hutchings, I. M. in Chemistry and Physics of Nanostructures and Related Non-Equilibrium Materials, edited by Ma, E., Fultz, B., Shull, R., Morral, J. and Nash, P., (TMS, Warrendale PA, 1997) pp. 312.Google Scholar
43.Anis, M., Rainforth, W. M. and Davies, H. A., Wear 172, 135145 (1994).Google Scholar
44.Inoue, A., Nakamura, T., Sugita, T., Zhang, T. and Masumoto, T., Mater. Trans. JIM 34, 351358 (1993).Google Scholar
45.Inoue, A., Kato, A., Zhang, T., Kim, S. G. and Masumoto, T., Mater. Trans. JIM 32, 609616 (1991).Google Scholar
46.Inoue, A., Nishiyama, N. and Matsuda, T., Mater. Trans. JIM 37, 181184 (1996).Google Scholar
47.Inoue, A., Zhang, T., Nishiyama, N., Ohba, K. and Masumoto, T., Mater. Trans. JIM 34, 12341237 (1993).Google Scholar
48.Rutherford, K. L., Ph.D. Thesis, (University of Cambridge, 1996).Google Scholar
49.Rutherford, K. L. and Hutchings, I. M., Surf. Coatings Technol. 79, 231239 (1996).Google Scholar
50.Rutherford, K. L. and Hutchings, I. M., J. Testing Eval. 25, 250260 (1997).Google Scholar
51.Trezona, R. I., Allsopp, D. N. and Hutchings, I. M., Wear 225–229, 205214 (1999).Google Scholar
52.Ashby, M. F. and Jones, D. R. H., Engineering Materials: An Introduction to Their Properties and Applications, (Pergamon, Oxford, 1980) p.87.Google Scholar
53.Inoue, A., Yamaguchi, H., Zhang, T. and Masumoto, T., Mater. Trans. JIM 31, 104109 (1990).Google Scholar
54.Inoue, A., Mater. Sci. Forum 269–272, 855864 (1998).Google Scholar
55.Inoue, A. and Masumoto, T., Mater. Sci. Eng. A 173, 18 (1993).Google Scholar