Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-23T11:54:20.287Z Has data issue: false hasContentIssue false

Ab Initio Study of Advanced Metallic Nuclear Fuels for Fast Breeder Reactors

Published online by Cambridge University Press:  22 May 2012

Alexander Landa
Affiliation:
Condensed Matter and Materials Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, L-045, 7000 East Avenue, Livermore, CA 94551-0808, U.S.A.
Per. Söderlind
Affiliation:
Condensed Matter and Materials Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, L-045, 7000 East Avenue, Livermore, CA 94551-0808, U.S.A.
Blazej Grabowski
Affiliation:
Condensed Matter and Materials Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, L-045, 7000 East Avenue, Livermore, CA 94551-0808, U.S.A.
Patrice E.A. Turchi
Affiliation:
Condensed Matter and Materials Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, L-045, 7000 East Avenue, Livermore, CA 94551-0808, U.S.A.
Andrei V. Ruban
Affiliation:
Applied Materials Physics, Department of Materials Science and Engineering, Royal Institute of Technology, Brinellvägen 23, SE-100 44 Stockholm, Sweden
Levente Vitos
Affiliation:
Applied Materials Physics, Department of Materials Science and Engineering, Royal Institute of Technology, Brinellvägen 23, SE-100 44 Stockholm, Sweden
Get access

Abstract

Density-functional formalism is applied to study the ground state properties of γ-U-Zr and γ-U-Mo solid solutions. Calculated heats of formation are compared with CALPHAD assessments. We discuss how the heat of formation in both alloys correlates with the charge transfer between the alloy components. The decomposition curves for γ-based U-Zr and U-Mo solid solutions are derived from Ising-type Monte Carlo simulations. We explore the idea of stabilization of the δ-UZr2 compound against the α-Zr (hcp) structure due to increase of Zr d-band occupancy by the addition of U to Zr. We discuss how the specific behavior of the electronic density of states in the vicinity of the Fermi level promotes the stabilization of the U2Mo compound. The mechanism of possible Am redistribution in the U-Zr and U-Mo fuels is also discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Snelgrove, J. L., Hofman, G. L., Mayer, M. K., Trybus, C. L., and Wiencek, T. C., Nucl. Eng. Des. 178, 119 (1997).Google Scholar
2. Staples, P., in: Transactions of 14th Inernational Topical Meeting on Research Reactor Fuel Management (RRFM 2010), (ENS-IAEA, Marrakech, Morocco (2010) Session 1, pp. 16.Google Scholar
3. Neogy, S., Saify, M. T., Jha, S. K., Srivastava, D., Hussain, M. M., Dey, G. K., and Singh, R. P., J. Nucl. Mater. 422, 77 (2012).Google Scholar
4. Wachs, D. M., Nuclear Engineering International, 08 March 2010, pp. 16.Google Scholar
5. Sinha, V. P., Hegde, P. V., Prasad, G. J., Dey, G. K., and Kamath, H. S., J. Alloys Compd. 491, 753 (2010).Google Scholar
6. Hofman, G. L., Walters, L. C., and Bauer, T. H., Progr. Nucl. Energy (1/2) 83 (1997).Google Scholar
7. Akabori, M., Itoh, A., Ogawa, T., Kobayashi, F., and Suzuki, Y., J. Nucl. Mater. 188, 249 (1992).Google Scholar
8. Ogawa, T., Akabori, M., Itoh, A., and Ogawa, T., J. Nucl. Mater. 232, 125 (1996).Google Scholar
9. Sikka, S. K., Vohra, Y. K., and Chidambaran, R., Prog. Mater. Sci. 27, 245 (1982).Google Scholar
10. Ogawa, T., Gibson, J. K., Haire, R. G., Gensini, M. M., and Akabori, M., J. Nucl. Mater. 223, 67 (1995).Google Scholar
11. Kim, Y. -S., Hofman, G. L., Yacout, A. M., and Kim, T. -K., in: Proceedings of International Conference on Fast Reactors and Related Fuel Cycles (FR09), Challenges and Opportunities, edited by Okazaki, T., Bouchard, J., Takeda, T., and Oka, Y. (I A E A-CN-176, Kyoto, Japan, 2009) pp. 19.Google Scholar
12. Kim, Y. -S., Hofman, G. L., Hayes, S. L., and Sohn, Y. -H., J. Nucl. Mater. 327, 27 (2004).Google Scholar
13. Okamoto, H., in: Binary Alloys Phase Diagrams, 2 nd Ed., edited by Massalski, T. B., (ASM International, Materials Park, Ohio 1990) Vol. 3 p. 2682.Google Scholar
14. Landa, A., Söderlind, P., and Turchi, P. E. A., J. Alloys Comp. 478, 103 (2009).Google Scholar
15. Landa, A., Söderlind, P., Turchi, P. E. A., Vitos, L., and Ruban, A., J. Nucl. Mater. 385, 68 (2009).Google Scholar
16. Landa, A., Söderlind, P., Turchi, P. E. A., Vitos, L., and Ruban, A., J. Nucl. Mater. 393, 141 (2009).Google Scholar
17. Landa, A., Söderlind, P., Turchi, P. E. A., Vitos, L., Peil, O. E., and Ruban, A.V., J. Nucl. Mater. 408, 61 (2011).Google Scholar
18. Landa, A., Söderlind, P., and Turchi, P. E. A., J. Nucl. Mater. 414, 132 (2011).Google Scholar
19. Abrikosov, I. A. and Skriver, H. L., Phys. Rev. B47, 16532 (1993).Google Scholar
20. Ruban, A. V. and Skriver, H. L., Comput. Mater. Sci. 15, 119 (1999).Google Scholar
21. Perdew, J. P., Burke, K., and Ernzerhof, M., Phys. Rev. Lett. 77, 3865 (1996).Google Scholar
22. Murnaghan, F. D., Proc. Natl. Acad. Sci. U.S.A. 30, 244 (1944).Google Scholar
23. Faulkner, J. S., Prog. Mater. Sci. 27, 1 (1982).Google Scholar
24. Ruban, A. V. and Skriver, H. L., Phys. Rev. B66, 024201 (2002).Google Scholar
25. Ruban, A. V., Simak, S. I., Korzhavyi, P. A., and Skriver, H. L., Phys. Rev. B66, 024202 (2002).Google Scholar
26. Abrikosov, I. A., Simak, S. I., Johansson, B., Ruban, A. V., and Skriver, H. L., Phys. Rev. B56, 9319 (1997).Google Scholar
27. Pourovskii, L. V., Ruban, A. V., Vitos, L., Ebert, H., Johansson, B., and Abrikosov, I. A., Phys. Rev. B71, 094415 (2005).Google Scholar
28. Vitos, L., Computational Quantum Mechanics for Materials Engineers: The EMTO Method and Applications (Springer-Verlag, London, 2007).Google Scholar
29. Kollar, J., Vitos, L., and Skriver, H. L., in: Electronic Structure and Physical Properties of Solids: The Uses of the LMTO Method, Lecture Notes in Physics, edited by Dreyssé, H. (Springer-Verlag, Berlin, 2000) pp. 85113.Google Scholar
30. Vitos, L., Abrikosov, I. A., and Johansson, B., Phys. Rev. Lett. 87, 156401 (2001).Google Scholar
31. Söderlind, P., Landa, A., and Sadigh, B., Phys. Rev. B66, 205109 (2002).Google Scholar
32. Wills, J. M., Eriksson, O., Alouani, M., and Price, D. L., in: Electronic Structure and Physical Properties of Solids: The Uses of the LMTO Method, edited by Dreyssé, H. (Springer-Verlag, Berlin, 2000), pp.148167.Google Scholar
33. Zunger, A., Wei, S. H., Ferreira, L. G., and Bernard, J. E., Phys. Rev. Lett. 65, 353 (1990).Google Scholar
34. Söderlind, P., Europhys. Lett. 55, 525 (2001); P. Söderlind and B. Sadigh, Phys. Rev. Lett 92, 185702 (2004).Google Scholar
35. Connoly, J. W. D. and Williams, A. R., Phys. Rev. B27, 5169 (1983).Google Scholar
36. Kresse, G. and Furthmüller, J., Phys. Rev. B54, 11169 (1996).Google Scholar
37. Kresse, G. and Furthmüller, J., Comput. Mater. Sci. 6, 15 (1996).Google Scholar
38. Kresse, G. and Joubert, D., Phys. Rev. B59, 1758 (1999).Google Scholar
39. Turchi, P. E. A., Abrikosov, I. A., Burton, B., Fries, S. G., Grimvall, G., Kauffman, L., Korzhavyi, P., Rao Manga, V., Ohno, M., Pisch, A., Scott, A., and Zhang, W., CALPHAD 31, 4 (2007).Google Scholar
40. Binder, K., Application of the Monte Carlo Method in Statistical Physics (Springer-Verlag, Berlin, 1987).Google Scholar
41. Okamoto, H., J. Phase Equilib. 14 (2), 267 (1993).Google Scholar
42. Greeff, C. W., Modeling Simul. Mater. Sci. Eng. 13, 1015 (2005).Google Scholar
43. Skriver, H. L., Phys. Rev. B31, 1909 (1985).Google Scholar
44. Zhang, X., Cui, Y. F., Xu, G. L., Zhu, W.J., Liu, H. S., Yin, B. Y., and Jin, Z.P., J. Nucl. Mater. 402, 15 (2010).Google Scholar
45. Alonso, P. R. and Rubiolo, G. H., Modeling. Simul. Mater. Sci. Eng. 15, 263 (2007).Google Scholar