Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-27T02:05:27.706Z Has data issue: false hasContentIssue false

Ab Initio Investigation of the High Pressure Elasticity of Mg2SiO4 Forsterite and Ringwoodite

Published online by Cambridge University Press:  10 February 2011

Lars Stixrude
Affiliation:
Department of Geological Sciences, University of Michigan, Ann Arbor, MI 48109–1063
R. M. Wentzcovitch
Affiliation:
Dept. of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455
C. Da Silva
Affiliation:
Dept. of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455
B. Kiefer
Affiliation:
Department of Geological Sciences, University of Michigan, Ann Arbor, MI 48109–1063
Get access

Abstract

We discuss the behavior of two minerals of the same composition, Mg2SiO4 but different structures: forsterite and ringwoodite. Ab initio plane-wave pseudopotential results are discussed in terms of the full elastic constant tensors of these phases and their elastic anisotropy. The structures of the two minerals, based on pseudo-hep and pseudo-fee packing of oxygens, respectively, show very different behavior at high pressure. While the elastic anisotropy of olivine depends weakly on pressure between 0 and 25 GPa, the anisotropy of ringwoodite decreases with pressure initially, vanishing at 17 GPa before increasing again at higher pressure. This unusual behavior is understood in terms of a change of sign of the combination of elastic constants c2+2c44-c11, and a resulting interchange of fast and slow directions of acoustic wave propagation. To gain insight into the origin of their elastic behavior, the ab initio results are compared with a simple model based on the O sub-lattice.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Abramson, E. H., Brown, J. M., Slutsky, L. J. and Zaug, J., J. Geophys. Res. 102, p. 12, 253 (1997).Google Scholar
2. Zha, C. S., Duffy, T. S., Downs, R. T. and Mao, H. K., J. Geophys. Res. 101, p. 17, 535 (1996).Google Scholar
3. Li, B. S., Gwanmesia, G. D. and Liebermann, R. C., Geophys. Res. Lett. 23, p. 2, 259 (1996).Google Scholar
4. Wentzcovitch, R. M., Martins, J. L. and Price, G. D., Phys. Rev. Lett. 70, p. 3, 947 (1993).Google Scholar
5. Kohn, W. and Sham, L. J., Phys. Rev. 140, p. A1133 (1965).Google Scholar
6. Lundqvist, S. and March, N. H., Theory of the Inhomogeneous Electron Gas, Plenum Press, London, 1987.Google Scholar
7. Troullier, N. and Martins, J. L., Phys. Rev. B 43, p. 1, 993 (1991).Google Scholar
8. Wentzcovitch, R. M., Phys. Rev. B 44, p. 2, 358 (1991).Google Scholar
9. Nielsen, H. and Martin, R., Phys. Rev. B 32, p. 3, 780 (1985).Google Scholar
10. da Silva, C., Stixrude, L. and Wentzcovitch, R. M., Geophys. Res. Lett. 24, p. 1, 963 (1997).Google Scholar
11. Kiefer, B., Stixrude, L. and Wentzcovitch, R. M., Geophys. Res. Lett. 24, p. 2, 841 (1997).Google Scholar
12. Andrault, D., Bouhifd, M. A., Itie, J. P. and Richet, P., Phys. Chem. Minerals 22, p. 99 (1995).Google Scholar
13. Karki, B. B., Stixrude, L., Clark, S. J., Warren, M. C., Ackland, G. J. and Crain, J., American Mineral. 82, p. 52 (1997).Google Scholar
14. Cohen, R. E., Stixrude, L. and Wasserman, E., Phys. Rev. B 56, p. 8, 575 (1997).Google Scholar
15. Gieske, J. H. and Barsch, G. R., Phys. Stat. Sol. 29, p. 121 (1968).Google Scholar
16. Hazen, R. M., Phys. Chem. Minerals 14, p. 13 (1987).Google Scholar
17. Wentzcovitch, R. M. and Stixrude, L., American Mineral. 82, p. 663 (1997).Google Scholar
18. Weidner, D. J., Sawamoto, H. and Sasaki, S., J. Geophys. Res. 89, p. 7852 (1984).Google Scholar
19. Kumazawa, M. and Anderson, O. L., J. Geophys. Res. 74, p. 5, 961 (1969).Google Scholar