Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-29T07:56:59.606Z Has data issue: false hasContentIssue false

AB Initio Calculations of Point Defects in Silicon

Published online by Cambridge University Press:  10 February 2011

Jianjun Xie
Affiliation:
Los Alamos National Laboratory, T-11, MS-B262, Los Alamos, NM 87545
S.P. Chen
Affiliation:
Los Alamos National Laboratory, T-11, MS-B262, Los Alamos, NM 87545
Get access

Abstract

We use the ab initio plane wave pseudopotential method and the density functional theory (DFT) to study the arsenic(As)-vacancy interactions in silicon. The detailed lattice distortions surrounding the As-vacancy defect and the energetics of As-vacancy reaction around the six-fold ring are investigated. We find that the As displaces its neighboring silicon atoms outward while the vacancy attracts its neighboring atoms inward. The binding energy and the formation energy of an As-vacancy pair are 1.21 eV and 2.37 eV, respectively. Once the vacancy and As binds together, the highest migration barrier for the whole complex is 1.19 eV, which is in good agreement with the experimental measurement of 1.07 eV. The calculated activation energy for the vacancy mediated diffusion of the neutral As in silicon is 3.56 eV. The nature of the binding between As and vacancy is explained from the lattice distortions introduced by the As-vacancy complex.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Fahey, P.M., Griffin, P.B., and Plummer, J.D., Rev. Mod. Phys. 61, p. 289 (1989).Google Scholar
2. Watkins, G.D., and Corbett, J.W., Phys. Rev. 134 A, p.1,359 (1964).Google Scholar
3. Nichols, C.S., Walle, C.G. Van de, ans Pantelides, S.T., Phys. Rev. B40, p.5,485 (1989).Google Scholar
4. Xie, J., and Chen, S.P., J. Appl. Phys. (submitted, 1998).Google Scholar
5. Hu, S. M., Phys. Status Solidi B 60, p. 595 (1973).Google Scholar
6. Ramamoorthy, M. and Pantelides, S.T., Phys. Rev. Lett. 76, p. 4,753 (1996).Google Scholar
7. Pankratov, O., Huang, H., Rubia, T. D. de la, and Mailhiot, C., Phys. Rev. B 56, p.13,172 (1997).Google Scholar
8. Bockstedte, M., Kley, A., Neugebauer, J. and Scheffler, M., Comput. Phys. Commun. 107, p. 187 (1997).Google Scholar
9. Ceperley, D.M. and Alder, B.J., Phys. Rev. Lett. 45, p. 567 (1980).Google Scholar
10. Perdew, J.P. and Zunger, A., Phys. Rev. B 23, p.5,048 (1981).Google Scholar
11. Hamann, D.R., Phys. Rev. B40, p.2,980 (1989).Google Scholar
12. Sugino, O. and Oshiyama, A., Phys. Rev. B 46, p. 12,335 (1992)Google Scholar
13. Antonelli, A., Kaxiras, E., and Chadi, D.J., Phys. Rev. Lett. 81, p.2,088 (1998).Google Scholar
14. Payne, M.C. et al., Phys. Rev. Lett. 56, p. 2,656 (1986).Google Scholar
15. Hirata, M., Hirata, M., and Saito, H., J. Phys. Soc. Jpn. 27, p. 405 (1969).Google Scholar
16. Mercer, J.L., Nelson, J.S., Wright, A.F. and Stechel, E.B., Modelling Simul. Mater. Eng. 6, p. 1 (1998).Google Scholar
17. Fair, R.B., in Impurity Doping Process in Silicon, edited by Wang, F.F.Y. (North-Holland Publ. Comp., 1981), p. 315442.Google Scholar
18. Masters, B.J. and Fairfield, J.M., J. Appl. Phys. 40, p.2,390 (1969).Google Scholar