Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-19T07:15:19.071Z Has data issue: false hasContentIssue false

Ab Initio Calculations for SiC-Al Interfaces by Conjugate-Gradient Techniques

Published online by Cambridge University Press:  10 February 2011

Masanori Kohyama*
Affiliation:
Department of Material Physics, Osaka National Research Institute, AIST, 1-8-31, Midorigaoka, Ikeda, Osaka 563, Japan, [email protected]
Get access

Abstract

Conjugate-gradient (CG) techniques for ab initio calculations of large complex systems have been examined for SIC-Al interfaces. The CG method by Bylander, Kleinman and Lee is more efficient than the Teter-Payne-Allan (TPA) method, the modified TPA method and the block Davidson method, although the TPA method is efficient for SiC surfaces. From the relaxed configurations, we have found strong attractive interactions between C and Al atoms, which should play a favorable role for adhesion between SiC and Al.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Ohuchi, F.S. and Kohyama, M., J. Am. Ceram. Soc. 74, 1163 (1991); M. Kohyama et al., J. Phys. Chem. Sol. 53, 345 (1992).Google Scholar
[2] Finnis, M.W. et al., Mater. Res. Soc. Proc. 357, 427 (1995).Google Scholar
[3] Car, R. and Parrinello, M., Phys. Rev. Lett., 55, 2471 (1985).Google Scholar
[4] Teter, M.P., Payne, M.C. and Allan, D.C., Phys. Rev. B 40, 12255 (1989).Google Scholar
[5] Payne, M.C. et al., Rev. Mod. Phys. 64, 1045 (1992).Google Scholar
[6] Needels, M. et al., Phys. Rev. B 46, 9768 (1992).Google Scholar
[7] Kruse, C. et al., J. Am. Ceram. Soc. 77, 431 (1994).Google Scholar
[8] Bylander, D.M., Kleinman, L. and Lee, S., Phys. Rev. B 42, 1394 (1990).Google Scholar
[9] Zempo, Y. et al., J. Mol. Struc. 310, 17 (1994).Google Scholar
[10] King-Smith, R.D. and Vanderbilt, D., Phys. Rev. B 49, 5828 (1994).Google Scholar
[11] Wright, A.F. and Atlas, S.R., Phys. Rev. B 50, 15248 (1994).Google Scholar
[12] Singh, D., Phys. Rev. B 40, 5428 (1989).Google Scholar
[13] Fu, C.L. and Ho, K.M., Phys. Rev. B 28, 5480 (1983); R.J. Needs et al., 33, 3778 (1986).Google Scholar
[14] Gillan, M.J., J. Phys. Condens. Matter 1, 689 (1989).Google Scholar
[15] Grumbach, M.P. et al., J. Phys. Condens. Matter 6, 1999 (1994).Google Scholar
[16] Kerker, G.P., Phys. Rev. B 23, 3082 (1981).Google Scholar
[17] Kresse, G. and Hafner, J., Phys. Rev. B 49, 14251 (1994).Google Scholar
[18] Wood, D.M. and Zunger, A.. J. Phys. A 18, 1343 (1985).Google Scholar
[19] Martins, J.L. and Cohen, M.L., Phys. Rev. B 37, 6134 (1988).Google Scholar
[20] Park, C.H. et al., Phys. Rev. B 47, 15996 (1993).Google Scholar
[21] Bachelet, G.B. et al., Phys. Rev. B 24, 4745 (1981); 26, 4199 (1982).Google Scholar
[22] Suga, T. and Miyazawa, K., in Metal-Ceramic Interfaces, edited by Ruhle, M. et al. (Pergamon Press, Oxford, UK, 1990), pp.189195,Google Scholar