Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-29T07:58:51.398Z Has data issue: false hasContentIssue false

29Si NMR Chemical Shifts and Energetics of Silica-Serine and Silica-Polyalcohol Complexes as Indicators of Silica Biomineralization Mechanisms

Published online by Cambridge University Press:  10 February 2011

N. Sahai
Affiliation:
Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742
J. A. Tossell
Affiliation:
Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742
Get access

Abstract

Serine- and polysaccharide-enriched organic matrix is associated with biogenic silica such as diatom tests, sponge spicules, and phytoliths. We have used molecular orbital theory to determine the relative stability and 29Si NMR shifts of direct Si-O-C ester-like bonds versus hydrogen bonds between the monomeric silicic acid and the alcohol group on aliphatic organics such as serine and threitol (a polyacohol as proxy for polysaccharides). Preliminary results suggest that at neutral pHs, H-bonds and ester-bonds of four-fold coordinated silicon are of comparable stability. Formation of ester-like bonds with five-fold coordinated silicon is endothermic at neutral pHs but is stabilized at higher pHs. 29Si shifts of the H-bonded and ester-bonded complexes of four-fold coordinated silicon range from −55 to −73 ppm similar to monomeric inorganic silicic acid but far more positive than the −92, −102, and −110 ppm values observed experimentally in biogenic silicas. The five-coordinated silicon complexes yield shifts of −96 to −107 ppm. The latter range is within the range of inorganic, polymerized silica. If five-fold coordinated Si with direct Si-O-C bonds is present as a precursor or intermediate or stable species in biogenic silica, it could have escaped detection due to overlap with inorganic polymerized silica. Thus, 29Si NMR shifts are not necessarily diagnostic of the presence or absence of Si-O-C bonds in biogenic silica.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Mann, S. Nature 365, p. 499 (1993).Google Scholar
2. Tacke, R. Angew. Chem. Int. Ed. 38, p. 3015 (1999).Google Scholar
3. Kinrade, S. D., Del, J. W. Nin, Schach, A. S., Sloan, T.A., Wildon, K. L., and Knight, C. T. G. Science 285, p. 1542 (1999).Google Scholar
4. Hecky, R., Mopper, K., Kilham, P., Degens, T. Mar. Bio. 19, p. 323 (1973).Google Scholar
5. Lobel, K. D., West, J. K., and Hench, L. L. Mar. Biol. 126, p. 353 (1996).Google Scholar
6. Shimizu, K., Cha, J., Stucky, G. D., and Morse, D. E. Proc. Natl. Acad. Sci. U.S.A. 95, p. 6234 (1998).Google Scholar
7. Cha, J. N., Shimizu, K., Zhou, Y., Christiansen, S. C., Chmelka, B., Stucky, G. D., and Morse, D. E. Proc. Natl. Acad. Sci. U.S.A. 96, p. 361 (1999).Google Scholar
8. Zhou, Y., Shimizu, K., Cha, J. N., Stucky, G. D., and Morse, D. E. Angew. Chem. Int. Ed. 38, p. 780 (1999).Google Scholar
9. Kroger, N., Deutzmann, R., and Sumper, M. Science 286, p. 1129 (1999).Google Scholar
10. Mann, S., Perry, C. C., Williams, R. J. P., Fyfe, C. A., Gobbi, G. C., and Kennedy, G. J. J. Chem. Soc., Chem. Commun., p. 168 (1983).Google Scholar
11. Perry, C. C. in Biomineralization: Chemical and Biochemical Perspectives, edited by Mann, S., Webb, J., and Williams, R. J. P. (VCH Publishers, Weinheim, 1989), p. 223256.Google Scholar
12. Perry, C. C. and Mann, S. in Origin, Evolution, and Modern Aspects ofBiomineralization in Plants and Animals, edited by Crick, R. E. (Plenum Press, NY, 1989), p. 419.Google Scholar
13. Schmidt, M. W. et al. J. Comput. Chem. 15, p. 1347 (1993).Google Scholar
14. Frisch, A. and Frisch, M. J. Gaussian 98 User's Reference pp. 280, (1998).Google Scholar
15. Becke, A. D. Phys. Rev. A 38, 3098 (1988).Google Scholar
16. Lee, C., et al., Phys. Rev. B. 37, 785 (1988)Google Scholar
17. Frisch, M. J. et al. Gaussian 94, Rev. B.3, Gaussian Inc., Pittsburgh, PA (1995).Google Scholar
18. Tawa, G. J., Topol, I. A., Burt, S. K., Caldwell, R. A., and Rashin, A. A., J. Chem. Phys. 109, p. 4852 (1998).Google Scholar
19. Wolinski, K., Hinton, J. F., and Pulay, P. J. Am. Chem. Soc., 112, p. 8251 (1992).Google Scholar
20. Bode, B. M. and Gordon, M. S. J. Mol. Graphics Mod. 16, p. 133 (1998).Google Scholar
21. Sahai, N. and J. Tossell, A., manuscript in prep.Google Scholar
22. Holmes, R. R. Chem. Rev. 90, p. 17 (1990).Google Scholar
23. Laine, R. M., Blohowiak, K. Y., Robinson, T. R., Hoppe, M. L., Nardi, P., Kampf, J. and Uhm, J. Nature 353, p. 642 (1991).Google Scholar
24. Herreros, B., Carr, S. W., and Klinowski, J. Science 263, p. 1585 (1994).Google Scholar
25. Belot, V., Corriu, R., Guerin, C., Henner, B., Leclercq, D., H., H. Mutin, Vioux, A., and Wang, Q. in Better Ceramic Through Chemistry, (Mat. Res. Soc. Symp. Proc. 180, 1990), p. 314.Google Scholar
26. Harrison, C. C. Phytochem. 41, p. 37 (1996).Google Scholar