Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-25T17:33:39.312Z Has data issue: false hasContentIssue false

29Si, 17O Liquid NMR and 29Si CP-MAS NMR Characterization of Siloxane-Oxide Materials, [(CH3)2SiO/TiO2, (CH3)2SiO/ZrO2]

Published online by Cambridge University Press:  21 February 2011

Florence Babonneau*
Affiliation:
Chimie de la Matière Condensée, Université Pierre et Marie Curie / CNRS, 4 place Jussieu, Paris, France.
Get access

Abstract

Sol-gel derived siloxane oxide materials are an entirely new family of hybrid systems at the frontier between silicones and glasses or ceramics, with a large variety of potential applications. Better control of the chemistry involved in their preparation should lead to an improvement in their properties, and this requires an investigation of the whole process, from the solution to the final materials. Nuclear Magnetic Resonance is a very suitable technique for this purpose, and this paper will give some illustrations on model systems (CH3)2SiO/TiO2, (CH3)2SiO/ZrO2, prepared from dimethyldiethoxysilane and titanium or zirconium alkoxides. It will be focused mainly on the use of 170 solution NMR which clearly shows the formation of Si-O-Ti or Si-O-Zr bonds, but also their disappearance during the aging process. 29Si MAS-NMR spectra of dried gels confirm that the difunctional units are mainly in polydimethylsiloxane chains, and that the system is phase separated. However, the use of cross-polarization techniques involving lK and 29Si nuclei will allow the detection of small number of units in a more constrained environment, certainly close to oxide-based particles.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Novak, B.M., Adv. Mater. 5 (1993) 422.Google Scholar
2 Schmidt, H., J. Non Cryst. Solids 73 (1985) 681.Google Scholar
3 Kasemann, R., Schmidt, H. in the proceedings of the First European Workshop on Hybrid Organic Inorganic Materials, edited by Sanchez, C., Ribot, F. (1993) p. 171.Google Scholar
4 Oviatt, H. W. Jr., Shea, K.J., Small, J. H., Chem. Mater. 5 (1993) 943.Google Scholar
5 Griesmar, P., Sanchez, C., Pucetti, G., Ledoux, I., Zyss, J., Molecular Engineering 1 (1991) 205.Google Scholar
6 Ellerby, L.M., Nishida, C.R., Nishida, F., Yamanaka, S.A., Dunn, B., Valentine, J.S., Zink, J.I., Science 255 (1992) 1113.Google Scholar
7 Sanchez, C., Ribot, F. in the proceedings of the First European Workshop on Hybrid Organic Inorganic Materials, edited by Sanchez, C., Ribot, F. (1993) p. 9.Google Scholar
8 Rodrigues, D.E., Brennan, A.B., Betrabet, C., Wang, B., G.L. Wilkes Chem. Mater. 4 (1992) 1437.Google Scholar
9 Babonneau, F., Bois, L., Livage, J. in Better Ceramics through Chemistry V. edited by Hampden-Smith, M.J., Klemperer, W.G., Brinker, C.J. (Mater. Res. Soc. Proc. 271, Pittsburgh, PA, 1992) pp. 237.Google Scholar
10 Diré, S., Babonneau, F., Carturan, G., Livage, J., J. Non Cryst. Solids 147&148 (1992) 231.Google Scholar
11 Babonneau, F., Maquet, J., Diré, S., Polymer Preprints 34 (1993) 246.Google Scholar
12 Babonneau, F., Bois, L., Livage, J., Diré, S. in Nanophase and Nanocomposite Materials. edited by Komarneni, S., Parker, J.C., Thomas, G.J. (Mater. Res. Soc. Proc. 286, Pittsburgh, PA, 1993) pp. 289.Google Scholar
13 Huang, H.-H., Orler, B., Wilkes, G.L. Macromolecules 20 (1987) 1322.Google Scholar
14 Programs from Bruker Spectrospin, Wissembourg, France Google Scholar
15 Harris, R.K., Robbins, M.L., Polymer 19 (1978) 1123.Google Scholar
16 Sugahara, Y., Okada, S., Kuroda, K., Kato, C., J. Non Cryst. Solids 139 (1992) 25.Google Scholar
17 Scheim, U., Rühlmann, K., Kelly, J.W., Evans, S.A. Jr, J. Organomet. Chem. 375 (1989) 33.Google Scholar
18 Day, V.W., Eberspacher, T.A., Klemperer, W.G., Park, C.W., Rosenberg, F.S. in Chemical Processing of Advanced Materials, edited by Hench, L.L., West, J.K. (J. Wiley & Sons, New York, 1992) p. 257.Google Scholar
19 Barstow, TJ., Smith, M.E., Whitfield, H.J., J. Mater. Chem. 2 (1992) 989.Google Scholar
20 Barstow, T.J., Stuart, S.N., Chem. Phys. 143 (1990) 459.Google Scholar
21 Mehring, M. in principles of High Resolution NMR in Solids (Springer-Verlag, Berlin, 1983), p. 129.Google Scholar
22 Alemany, L.B., Grant, D.M., Pugmire, R.J., Alger, T.D., Zilm, K.W., J. Am. Chem. Soc. 105 (1983) 2133.Google Scholar
23 Walther, K.L., Wokaun, A., Baiker, A., Molecular Physics 71 (1990) 769.Google Scholar
24 Carajava, G.S., Leyden, D.E., Quinting, G.R., Maciel, G.E. Anal. Chem. 60 (1988) 1776.Google Scholar
25 Snape, CE., Axelson, D.E., Botto, R.E., Delpuech, JJ., Tekely, P., Gerstein, B.C., Pruskit, M., Maciel, G.E., Wilson, M.A., Fuel 68 (1989) 547.Google Scholar
26 Sugahara, Y., Tanaka, Y., Sato, S., Kuroda, K., Kato, C. in Better Ceramics through Chemistry V. edited by Hampden-Smith, M.J., Klemperer, W.G., Brinker, C.J. (Mater. Res. Soc. Proc. 271, Pittsburgh, PA, 1992) pp. 231.Google Scholar
27 Fyfe, C.A., Zhang, Y., Aroca, P., J. Am. Chem. Soc. 114 (1992) 3252.Google Scholar