Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-29T07:26:47.786Z Has data issue: false hasContentIssue false

1.5 μm In0.53Al0.14Ga0.33As/In0.52Al0.48As Distributed Bragg Reflector and Single Cavity Active Layer Grown with In-Situ Double Beam Laser Reflectometry

Published online by Cambridge University Press:  10 February 2011

Jong-Hyeob Baek
Affiliation:
Electronics and Telecommunications Research Institute, Yusong P.O. BOX 106, Taejon 305–600, Republic of Korea
Bun Lee
Affiliation:
Electronics and Telecommunications Research Institute, Yusong P.O. BOX 106, Taejon 305–600, Republic of Korea
Jin Hong Lee
Affiliation:
Electronics and Telecommunications Research Institute, Yusong P.O. BOX 106, Taejon 305–600, Republic of Korea
Won Seok Han
Affiliation:
Physics Department, Chungnam National University, Taejon 305–600, Republic of Korea
El-Hang Lee
Affiliation:
Electronics and Telecommunications Research Institute, Yusong P.O. BOX 106, Taejon 305–600, Republic of Korea
Get access

Abstract

We report the highly reflecting (>99.9%) In0.53Al0.14Ga0.33As/In0.52Al0.48As 30.5 pairs distributed Bragg reflector (DBR) and the In0.53Ga0.47As/ In0.52Al0.48As active cavity layer grown at high temperature by low pressure metal organic chemical vapor deposition with in-situ double beam laser reflectometry. One of the laser wavelengths selected for in-situ measurement was same as the DBR wavelength. The growth temperature was 750 °C. Good surface morphology of the multi-layer stacks was achieved by the temperature ramping of the InP buffer layer at the beginning of a multi-layer stacks. The width of stop band edge of the DBR reflectivity spectrum was found to be 1000Å.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Gourley, P. L., Fritz, I. J., Brennan, T. M., Hammons, B. E., MaDonald, A. E., and Myers, D. R., Appl. Phys. Lett. 60, 2057 (1992).Google Scholar
2. Koyama, F., Uenohara, H., Sakaguchi, T., and Iga, K., Jpn. J. Appl. Phys. 26, 1077 (1987).Google Scholar
3. Tai, K., Chao, F. S., Tsang, W. T., Chu, S. N. G., Wynn, J. D., and Sergent, A. M., Electronic Lett. 27, 1540(1991).Google Scholar
4. Lambert, B., Toudic, Y., Rouillard, Y., Gauneau, M., and Baudet, M., Appl. Phys. Lett. 66, 442 (1995).Google Scholar
5. Tai, K., Fischer, R. J., Cho, A. Y., Huang, K. F., Electronics Lett. 25, 1160 (1989).Google Scholar
6. Lin, C H., Chua, C. L., Zhu, Z. H, Ejeckam, F. E., Wu, T C., Lo, Y. H, and Bhat, R., Appl Phys. Lett. 64, 3395(1994).Google Scholar
7. Moseley, A. J., Thompson, J., Robbins, D. J., and Kearley, M. Q., Electronics Lett. 25, 1718 (1989).Google Scholar
8. Babic, D. I., Dudley, J. J., Streubel, K., Mirin, R. P., Bowers, J. E., and Hu, E. L., Appl. Phys. Lett. 66, 1030 (1995).Google Scholar
9. Bhat, R., Koza, M. A., Kash, K., Alien, S. J., Hong, W.P, Schwarz, S. A., Chang, G. K., and Lin, P., J. Crystal Growth, 108, 441 (1991).Google Scholar
10. Lee, J. H., Lee, B., Baek, J.-H., Han, W. S., Kim, H. M., Lee, E -H, Sung, T. Y., submitted in Appl. Phys. Lett.Google Scholar
11. Frateschi, N. C., Hummel, S. G., and Dapkus, P. D., Electronics Lett. 27, 157 (1991).Google Scholar
12. Baek, J.-H., Lee, B., Choi, S. W., Lee, J. H., and Lee, E.-H., Appl. Phys. Lett. 68, 2355 (1996).Google Scholar