Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-14T02:40:54.202Z Has data issue: false hasContentIssue false

Ab-initio theory of CPP transport

Published online by Cambridge University Press:  10 February 2011

P. Weinberger*
Affiliation:
Center for Computational Materials Science, TU Wien, Getreidemarkt 6/134, A1060 Vienna, Austria
Get access

Abstract

The phenomenon of electric transport perpendicular to the planes of atoms is discussed in terms of an ab-initio approach based on the Kubo-Greenwood equation. Since level of decription is fully relativistic “artifacts” due to spin resolution are avoided. Besides a formal discussion of the applied methods and an illustration of the numerical procedures, in particular the dependence of the magnetoresistance on the quality of interfaces, and issues concerning “tunneling” in metal/non-metal heterojunctions are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Kubo, R., “Statistical-mechanical theory of irreversible processes. I. General theory and simple application to magnetic and conduction problems”, J. Phys. Soc. Japan 12, 570 (1957).Google Scholar
[2] Kubo, R. and Miyake, S. J., “Quantum theory of galvanomagnetic effect at extremely strong magnetic fileds”, Solid State Phys. 17, 269 (1965).Google Scholar
[3] Kubo, R., Toda, M., and Hashitsume, N., Statistical Physics II: Nonequilibrium Statistical Mechanics, Springer Verlag, Berlin, 1985.Google Scholar
[4] Greenwood, D. A., ”The Boltzmann equation in the theory of electrical conduction in metals”, Proc. Phys. Soc. 71, 585 (1958).Google Scholar
[5] Tsymbal, E. Y. and Pettifor, D. G., “Perspectives of Giant Magnetoresistance”, Solid State Physics Vol. 56, 113 - 237 (2001).Google Scholar
[6] Levy, P. M. and Mertig, I., “Theory of Giant Magnetoresistance”, Advances in Condensed Matter, Vol. 3 Science (ed. by Sarma, D.D., Kotliar, G. and Tokura, Y.), Taylor & Francis, London and New York (2002).Google Scholar
[7] Eschrig, H., Fundamentals of Density Functional Theory, Teubner, B. G. Verlagsgesellschaft, Stuttgart, Leipzig, 1996.Google Scholar
[8] Weinberger, P. and Szunyogh, L., “Perpendicular magnetism”, Computational Materials Science 17, 414 (2000).Google Scholar
[9] Weinberger, P., Electron Scattering Theory for Ordered and Disordered Matter, Clarendon Press (Oxford University Press), 1990.Google Scholar
[10] Weinberger, P., Levy, P.M., Banhart, J., Szunyogh, L. and Úfalussy, B., “Band structure and electrical conductivity of disordered semi-infinite systems”, J. Phys. Cond. Matt. 8, 7677 (1996).Google Scholar
[11] Weinberger, P., “Ab initio theories of electric transport in solid systems with reduced dimensions”, Physics Reports, in press (2003).Google Scholar
[12] Levy, P. M., Solid State Physics Vol. 47, eds. Ehrenreich, H. and Turnbull, D. (Academic Press, Cambridge, MA, 1994) pp. 367462.Google Scholar
[13] Camblong, H. E., Levy, P. M., and Zhang, S., “Electron transport in magnetic inho-mogeneous media”, Phys. Rev. B 51, 16052 (1995).Google Scholar
[14] Nikolić, B., “Deconstructing Kubo formula usage: exact conductance of a mesoscopic system from weak to strong disorder limit”, Phys. Rev. B 64, 165303 (2001).Google Scholar
[15] Weinberger, P., Szunyogh, L., Blaas, C., and Sommers, C., “Perpendicular transport in Fe/Ge heterojunctions”, Phys. Rev. B 64, 184429 (2001).Google Scholar
[16] Weinberger, P., “Exchange bias due to configurational magnetic rearrangements”, Phys. Rev. B 65, 014430 (2002).Google Scholar
[17] Jansen, H. J. F., “Magnetic anisotropy in density-functional theory”, Phys. Rev. B 59, 4699 (1999).Google Scholar
[18] Weinberger, P., Drchal, V., Kudrnovsky, J., Turek, I., Herper, H., Szunyogh, L. and Sommers, C., “Aspects of magneto-tunneling drawn from ab-initio type calculations”, Philos. Mag. B 82, 1027 - 1045 (2002).Google Scholar
[19] Herper, H. C., Weinberger, P., Vernes, A., Szunyogh, L., and Sommers, C., “Electric transport in Fe/ZnSe/Fe heterostructures”, Phys. Rev. B 64, 184442 (2001).Google Scholar
[20] Herper, H., Weinberger, P., Szunyogh, L., and Sommers, C., “Interlayer exchange coupling, magnetic anisotropy and perpendicular electric transport in Fe/Si/Fe trilay-ers”, Phys. Rev. B 66, 064426 (2002).Google Scholar
[21] Akerman, J. J., Schuller, I. K., Slaughter, J. M., and Dave, R. W., “Tunneling criteria for magnetic-insulator magnetic structures”, J. Appl. Phys. Lett. 79, 1, (2001).Google Scholar