Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-25T15:49:11.627Z Has data issue: false hasContentIssue false

Ab-initio modelling of atomic and molecular Hydrogen adsorption in graphite

Published online by Cambridge University Press:  21 March 2011

Sara Letardi
Affiliation:
Ente Nazionale per le Nuove Tecnologie, Energia e Ambiente (ENEA), Centro Ricerche Casaccia, HPCN Project, C.P. 2400, I-00100 Roma, Italy
Massimo Celino
Affiliation:
Ente Nazionale per le Nuove Tecnologie, Energia e Ambiente (ENEA), Centro Ricerche Casaccia, HPCN Project, C.P. 2400, I-00100 Roma, Italy Istituto Nazionale di Fisica della Materia (INFM), Unitá di Ricerca Roma 1, Italy
Fabrizio Cleri
Affiliation:
Ente Nazionale per le Nuove Tecnologie, Energia e Ambiente (ENEA), Centro Ricerche Casaccia, Divisione Materiali, C.P. 2400, I-00100 Roma, Italy Istituto Nazionale di Fisica della Materia (INFM), Unitá di Ricerca Roma 1, Italy
Vittorio Rosato
Affiliation:
Ente Nazionale per le Nuove Tecnologie, Energia e Ambiente (ENEA), Centro Ricerche Casaccia, HPCN Project, C.P. 2400, I-00100 Roma, Italy Istituto Nazionale di Fisica della Materia (INFM), Unitá di Ricerca Roma 1, Italy
Manuela Volpe
Affiliation:
Ente Nazionale per le Nuove Tecnologie, Energia e Ambiente (ENEA), Centro Ricerche Casaccia, HPCN Project, C.P. 2400, I-00100 Roma, Italy Dipartimento Scienze e Tecnologie Chimiche, Universitá Tor Vergata, 00158 Roma, Italy
Get access

Abstract

Ab-initio electronic structure calculations have been used to evaluate the binding energy of atomic and molecular hydrogen to graphite lattice defects. Results show that graphite defects (Stone- Wales, vacancy) are preferred binding sites with respect to regular lattice sites. We find that molecular hydrogen can be physisorbed between the graphite planes, but cannot diffuse across a graphitic plane.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Dresselhaus, G., Dresselhaus, M., Eklund, P. C., Science of Fullerenes and Nanotubes, Academic Press, San Diego CA, 1996.Google Scholar
2. Dresselhaus, M., Williams, K. A., and Eklund, P.C., MRS Bulletin, (1999) 45.Google Scholar
3. Bjordjevic, B. R., Thorpe, M. F. and Wooten, F., Phys. Rev. B 52, 5685 (1995).Google Scholar
4. Rosato, V., Celino, M., Benedek, G., Gaito, S., Phys. Rev. B 60, 16928 (1999).Google Scholar
5. Car, R. and Parrinello, M., Phys. Rev. Lett. 55, 2471 (1985).Google Scholar
6. Tassone, F., Mauri, F., Car, R., Phys. Rev. B 50, 10561 (1994).Google Scholar
7. Kleinman, L. and Bylander, D. M., Phys. Rev. Lett. 48, 1425 (1982).Google Scholar
8. Perdew, J. P. et al. Phys. Rev. B 46, 6671 (1992).Google Scholar
9. Vita, A. De, Stengel, M., LauTREC code, Centre for Advanced Parallel Applications (CAPA), École Polytechnique Fédérale, Lausanne (Switzerland) (capawww.epfl.ch).Google Scholar
10. Yin, M. T. and Cohen, M. L., Phys. Rev. B 29, 6996 (1984).Google Scholar
11. Charlier, J. C., Michenaud, J. P., Gonze, X., Phys. Rev. B 46, 4531 (1992).Google Scholar
12. Conversano, R., Celino, M., Cleri, F., Rosato, V., Volpe, M., Mat. Res. Soc. Proceedings. 663 (2001).Google Scholar
13. Xu, C. H., Fu, C. L. and Pedraza, D. F., Phys. Rev. B 48, 13273 (1993).Google Scholar
14. Hult, E., Andersson, Y., Lundqvist, B.I., Langreth, D.C., Phys. Rev. Lett. 77, 2029 (1996).Google Scholar
15. Meijer, E. J. and Sprik, M., J. Chem. Phys. 105, 8684 (1996).Google Scholar