Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-25T15:33:43.889Z Has data issue: false hasContentIssue false

Ab-Initio Determination of the Atomic Structure of Symmetrical Tilt Grain Boundaries in BCC Transition Metals

Published online by Cambridge University Press:  10 February 2011

C. Elsässer
Affiliation:
Max-Planck-Institut für Metallforschung, Seestrasse 92, D-70174 Stuttgart, Germany
O. Beck
Affiliation:
Max-Planck-Institut für Metallforschung, Seestrasse 92, D-70174 Stuttgart, Germany
T. Ochs
Affiliation:
Max-Planck-Institut für Metallforschung, Seestrasse 92, D-70174 Stuttgart, Germany
B. Meyer
Affiliation:
Max-Planck-Institut für Metallforschung, Heisenbergstrasse 1, D-70569 Stuttgart, Germany.
Get access

Abstract

Atomistic simulations of grain-boundary structures in body-centered cubic transition metals have revealed that angle-dependent contributions to interatomic interactions are essential. Unfortunately, the results of presently available empirical many-body potentials are not yet always sufficiently reliable for quantitative theoretical predictions of grain-boundary structures, which are consistent with experimental observations, e.g. by high-resolution transmission electron microscopy.

Ab-initio electronic-structure calculations based on the local-density-functional theory offer the possibility to determine accurately the microscopic structures of special, high-symmetry grain boundaries, which can be used as data bases for the improvement of empirical many-body potentials. Such ab-initio calculations, with a mixed-basis pseudopotential method and grain-boundary supercells, are presented for Σ5 (310) [001] 36.87° symmetrical tilt grain boundaries in Niobium and Molybdenum.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Daw, M. S. and Baskes, M. I., Phys. Rev. B 29, 6443 (1984).Google Scholar
[2] Finnis, M. W. and Sinclair, J. E., Phil. Mag. A 50, 45 (1984).Google Scholar
[3] Hohenberg, P. and Kohn, W., Phys. Rev. 136, B864 (1964);Google Scholar
Kohn, W. and Sham, L. J., Phys. Rev. 140, A1133 (1965).Google Scholar
[4] Pettifor, D. G., Solid State Physics 40, 43 (1987).Google Scholar
[5] Schmidt, C., Ernst, F., Finnis, M. W. and Vitek, V., Phys. Rev. Lett. 75, 2160 (1995).Google Scholar
[6] Pettifor, D. G., Phys. Rev. Lett. 63, 2480 (1989).Google Scholar
[7] Carlsson, A. E., Phys. Rev. B 44, 6590 (1991).Google Scholar
[8] Moriarty, J. A., Phys. Rev. B 42, 1609 (1990).Google Scholar
[9] Campbell, G. H., Foiles, S. M., Gumbsch, P., Riihle, M. and King, W. E., Phys. Rev. Lett. 70, 449 (1993).Google Scholar
[10] Paxton, A. T., J. Phys. D: Appl. Phys. 29, 1689 (1996).Google Scholar
[11] Marinopoulos, A. G., Vitek, V. and Carlsson, A. E., Phil. Mag. A 72, 1311 (1995).Google Scholar
[12] Pénisson, J. M., Bacia, M. and Biscondi, M., Phil. Mag. A 73, 859 (1996).Google Scholar
[13] Vanderbilt, D., Phys. Rev. B 32, 8412 (1985);Google Scholar
Louie, S. G., Froyen, S. and Cohen, M. L., Phys. Rev. B 26, 1738 (1982).Google Scholar
[14] Louie, S. G., Ho, K.-M. and Cohen, M. L., Phys. Rev. B 19, 1774 (1979);Google Scholar
Fu, C.-L. and Ho, K.-M., Phys. Rev. B 28, 5480 (1983);Google Scholar
Elsässer, C., Takeuchi, N., Ho, K. M., Chan, C. T., Braun, P. and Fähnle, M., J. Phys.: Condens. Matter 2, 4371 (1990).Google Scholar
[15] Ho, K. M., Elsässer, C., Chan, C. T. and Fähnle, M., J. Phys.: Condens. Matter 4, 5189 (1992);Google Scholar
Elsässer, C., Fähnle, M., Chan, C. T. and Ho, K. M., Phys. Rev. B 49, 13975 (1994).Google Scholar
[16] Rose, J. H., Smith, J. R., Guinea, F. and Ferrante, J., Phys. Rev. B 29, 2963 (1984).Google Scholar
[17] Kittel, C., Introduction to Solid State Physics, Wiley, New York, 1986.Google Scholar