Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-27T02:36:10.018Z Has data issue: false hasContentIssue false

Ab Initio Study of Vibrational Anharmonic Coupling Effects in Oligo(para-phenylenes)

Published online by Cambridge University Press:  15 March 2011

G. Heimel
Affiliation:
Institute of Solid State Physics, Graz University of Technology, Graz, Austria
D. Somitsch
Affiliation:
Institute of Experimental Physics, University of Graz, Graz, Austria
P. Knoll
Affiliation:
Institute of Experimental Physics, University of Graz, Graz, Austria
E. Zojer
Affiliation:
Institute of Solid State Physics, Graz University of Technology, Graz, Austria
Get access

Abstract

In this study we present a theoretical approach to simulate vibrational anharmonic coupling effects seen in the Raman spectra of oligo(para-phenylenes). Quantum chemical ab inito methods are applied to determine anharmonic force constants and energy corrections on the harmonic vibrational frequencies of the isolated molecules. Semiempirical methods are applied to compute Raman intensities of fundamentals and combination bands. This methodology is then used to characterize a previously unassigned Fermi resonance around 1600 cm-1. The evolution of this quantum mechanical resonance with oligomer length and planarity is compared to experimental data.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Cuff, L. and Kertesz, M., Macromolecules 27, 762 (1994).Google Scholar
2. Cuff, L. and Kertesz, M., J. Phys. Chem. 98, 12223 (1994).Google Scholar
3. Krichene, S., Buisson, J. P. and Lefrant, S., Synth. Met. 17, 589 (1987); J. P. Buissson, S. Krichene and S. Lefrant, Synth. Met. 21, 229 (1987).Google Scholar
4. Castiglioni, C., Gussoni, M. and Zerbi, G., Synth. Met. 29, E1 (1989). J. Soto, V. Hernandez and J. T. Lopez Navarette, Synth. Met. 51, 229 (1992).Google Scholar
5. Marucci, A., Pimenta, M.A., Brown, S. D.M., Matthews, M.J., Dresselhaus, M.S., Endo, M., J. Mater. Res. 14(8), 3447 (1999).Google Scholar
6. Furukawa, Y., J. Phys. Chem. 100, 15644 (1996).Google Scholar
7. Furukawa, Y., Ohtsuka, H. and Tasumi, M., Synth. Met. 55–57, 516 (1993).Google Scholar
8. Zannoni, G. and Zerbi, G., J. Chem. Phys. 82(1), 31 (1985).Google Scholar
9. Ohtsuka, H., Furukawa, Y. and Tasumi, M., Spectrochim. Acta A 49, 731 (1993).Google Scholar
10. Knoll, P., Singer, R. and Kiefer, W., Appl.Spectr. 44, 776 (1990).Google Scholar
11. Adamo, C. and Barone, V., J. Chem. Phys. 108(2), 664 (1998).Google Scholar
12. Lee, C., Yang, W. und Parr, R. G., Phys. Rev. B 37 (2), 785 (1988).Google Scholar
13. Ditchfield, R., Hehre, W. J. und Pople, J. A., J. Chem. Phys. 54(29), 724 (1971).Google Scholar
14. Pietro, W. J., Francl, M. M., Hehre, W. J., DeFrees, D. J., Pople, J. A. und Binkley, J. S., J. Am. Chem. Soc. 104, 5039 (1982).Google Scholar
15. Zerner, M. C., Lowe, G. H., Kirchner, R. F. and Mueller-Westerhoff, U. T., J. Am. Chem. Soc. 102, 589 (1980).Google Scholar
16. Wilson, E. B. Jr, Phys. Rev. 46, 146 (1934).Google Scholar
17. Puschnig, P., Ambrosch-Draxl, C., Heimel, G., Zojer, E., Reel, R., Leising, G., Kriechbaum, M. and Graupner, W., Synth. Met. 116, 327 (2001).Google Scholar
18.Details on the theoretical and computational methods will be published elsewhere soon.Google Scholar
19. Eaton, V. J. and Steele, D., J. Chem. Soc. Faraday Trans. 2, 1601 (1973).Google Scholar
20. Cailleau, H., Baudour, J. L., Meinnel, J., Dworkin, A., Moussa, F. and Zeyen, C.M.E., Faraday Disc. Chem. Soc. 69, 7 (1980).Google Scholar
21. Akiyama, M., Spectrochim. Acta A 40, 367 (1984).Google Scholar
22. Baudour, J. L., Cailleau, H. and Yelon, W. B., Acta Cryst. B 33, 1773 (1977).Google Scholar