Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-27T14:34:51.307Z Has data issue: false hasContentIssue false

Ab initio study of the effect of oxygen vacancy on magnetism in Co doped ZnO

Published online by Cambridge University Press:  18 March 2013

S. Lardjane
Affiliation:
IRTES-LERMPS, UTBM, Site de Montbéliard, 90010-Belfort cedex, France LEPM-URMER, University of Tlemcen, BP 119 13000, Tlemcen, Algeria.
G. Merad
Affiliation:
LEPM-URMER, University of Tlemcen, BP 119 13000, Tlemcen, Algeria.
N. Fenineche
Affiliation:
IRTES-LERMPS, UTBM, Site de Montbéliard, 90010-Belfort cedex, France
H.I. Faraoun
Affiliation:
LEPM-URMER, University of Tlemcen, BP 119 13000, Tlemcen, Algeria.
A. Billard
Affiliation:
IRTES-LERMPS, UTBM, Site de Montbéliard, 90010-Belfort cedex, France
Get access

Abstract

The effect of oxygen vacancy (VO) on the electronic and magnetic properties of ZnCoO was studied with first principle methods based on density functional theory (DFT). Calculations were performed, on a periodic 3×3×3 wurtzite supercell of ZnO which consists of 108 atoms with two Co ions substituted for two Zn atoms, using the generalized gradient approximation with Hubbard U correction method (GGA+U). We have studied the interatomic exchange interaction with and without VO for different configurations with different magnetic atom lattice arrangements. The total energies, electronic structures and magnetic moments were calculated for each configuration.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Pan, F., Song, C., Liu, X.J., Yang, Y.C and Zeng Mater, F.. Sci. Eng. R 62 1 (2008).CrossRefGoogle Scholar
Liu, C., Yun, F. and Morkoc, H. J. Mater. Sci.-Mater. El. 16 555 (2005).CrossRefGoogle Scholar
Prellier, W., Fouchet, A. and Mercey, B. 2003 J. Phys.: Condens. Matter 15 (1583).Google Scholar
Chambers, S.A., Droubay, T.C., Wang, C.M., Rosso, K.M., Heald, S.M., Schwartz, D.A., Kittilstved, K.R. and Gamelin Mater, D.R.. Today 92 (2006).Google Scholar
Sato, K. and Katayama-Yoshida, H. Jpn. J. Appl. Phys. Part 2 39 555 (2000).CrossRefGoogle Scholar
Bruno, P. and Sandratskii, L. M. Phys. Rev. B 73, 045203 (2006).Google Scholar
Petit, L., Schulthess, T.C., Svane, A., Szotek, Z., Temmerman, W.M. and Janotti, A. Phys. Rev. B 73, 045107 (2006).CrossRefGoogle Scholar
Spaldin, N. A. Phys. Rev. B 69 125201 (2004).CrossRefGoogle Scholar
Ueda, K., Tabata, H. and Kawai Appl, T.. Phys. Lett. 79 988 (2001).Google Scholar
Janisch, R., Gopal, P. and Spaldin, N.A. J. Phys.: Con- dens. Matter 17 R657 (2005).Google Scholar
Jin, Z., Fukumura, T., Kawasaki, M., Ando, K., Saito, H., Sekiguchi, T., Yoo, Y.Z., Murakami, M., Matsumoto, Y., Hasegawa, T. and Koinuma, H. Appl. Phys. Lett. 78 3824 (2001).CrossRefGoogle Scholar
Jedrecy, N., von Bardeleben, H.J., Zheng, Y. and Cantin, J. L Phys. Rev. B 69 041308 (2004).CrossRefGoogle Scholar
Seghier, D. and Gislason, H. P. Physica B 404 4800 (2009).CrossRefGoogle Scholar
Blöchl, P. E., Phys. Rev. B 50 17953 (1994).CrossRefGoogle Scholar
Kresse, G. and Furthmüller, J., Phys. Rev. B 54 11169 (1996).CrossRefGoogle Scholar
Liu, En-Zuo, He, Yan, and Jiang, J. Z.. Appl. Phys. Lett. 93, 132506 (2008).CrossRefGoogle Scholar
Na, SuHo and Park, Chul-Hong. J Korean Phys Soc 54, (2009) 86872.CrossRefGoogle Scholar
Lardjane, S., Merad, G., Fenineche, N., Billard, A., Faraoun, H.I.. Journal of Alloys and Compounds 551 (2013) 306311.CrossRefGoogle Scholar