Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-19T07:18:22.958Z Has data issue: false hasContentIssue false

Ab Initio Study of Expitaxial Growth on a Si(100) Surface in the Presence of Steps

Published online by Cambridge University Press:  10 February 2011

V. Milman
Affiliation:
BIOSYM/MSI, The Quorum, Barnwell Road, Cambridge, UK, [email protected]
S. J. Pennycook
Affiliation:
Solid State Division, ORNL, Oak Ridge TN 37831
D. E. Jesson
Affiliation:
Solid State Division, ORNL, Oak Ridge TN 37831
Get access

Abstract

The motion of a Si adatom over the reconstructed Si(100) surface with single-height rebonded (SB) step is studied using the pseudopotential total energy method. The step is shown to act as a good sink for adatoms descending onto the lower ledge. This is due to the presence of deep traps at the rebonded dimer row on the lower terrace and to the negative Ehrlich-Schwoebel barrier (the activation barrier for descent from the edge is 0.23 eV lower than for the motion on a flat surface). The diffusion characteristics of the adatom on both terraces are virtually unaffected by the presence of the step. The dimer buckling sequence on a lower terrace depends strongly on the position of the adatom along the diffusion path.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ehrlich, G., J. Chem Phys. 44, 1039 (1966); R.L. Schwoebel, J. Appl. Phys. 40, 614 (1969).Google Scholar
2. Johnson, M.D. et a., Phys. Rev. Lett. 72, 116 (1994).Google Scholar
3. Smilauer, P., Wilby, M.R. and Vvedensky, D.D., Phys. Rev. B47, 4119 (1993).Google Scholar
4. Vannostrand, J.E., Chey, S.J., Hasan, M.A., Cahill, D.G. and Green, J.E., Phys. Rev. Lett. 74, 1127 (1995).Google Scholar
5. Chadi, D.J., Phys. Rev. Lett. 59, 1691 (1987).Google Scholar
6. Payne, M.C., Teter, M.P., Allan, D.C., Arias, T.A. and Joannopoulos, J.D., Rev. Mod. Phys. 64 1045 (1992).Google Scholar
7. Clarke, L.J., Stich, I. and Payne, M.C., Comp. Phys. Commun. 72, 14 (1992).Google Scholar
8. Kerker, G.P., J. Phys. C13, L189 (1980).Google Scholar
9. Kleinman, L. and Bylander, D.M., Phys. Rev. Lett. 48, 1425 (1982).Google Scholar
10. King-Smith, R.D., Payne, M.C. and Lin, J.S., Phys. Rev. B 44, 13063 (1991).Google Scholar
11. Perdew, J.P. and Zunger, A., Phys. Rev. B 23, 5048 (1981).Google Scholar
12. Experimental values are 5.429 A for lattice constant, 100 GPa for bulk modulus and 4.23 for its pressure derivative.Google Scholar
13. Wolkow, R.A., Phys. Rev. Lett. 68, 2636 (1992).Google Scholar
14. Knall, J. and Pethica, J.B., Surf. Sci. 265, 156 (1992).Google Scholar
15. Roberts, N. and Needs, R.J., Surf. Sci. 236, 112 (1991).Google Scholar
16. Dabrowski, J. and Scheffler, M., Appl. Surf. Sci. 56–58, 15 (1992).Google Scholar
17. Northrup, J.E., Phys. Rev. B 47, 10032 (1993).Google Scholar
18. Y.W.Mo, Kleiner, J., Webb, M.B. and Lagally, M.G., Phys. Rev. Lett. 66, 1998 (1991).Google Scholar
19. Brocks, G., Kelly, P.J. and Car, R., Phys. Rev. Lett. 66, 1729 (1991).Google Scholar
20. Zhang, Q.M., Roland, C., Boguslawski, P. and Bernholc, J., Phys. Rev. Lett. 75, 101 (1995).Google Scholar
21. Milman, V., Jesson, D.E., Pennycook, S.J., Payne, M.C., Lee, M.H. and Stich, I., Phys. Rev. B 50, 2663 (1994).Google Scholar
22. Wolkow, R.A., Phys. Rev. Lett. 74, 4448 (1995).Google Scholar