Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T02:37:50.605Z Has data issue: false hasContentIssue false

Ab initio studies of the structure and the interaction of cellulose IIII crystal

Published online by Cambridge University Press:  03 July 2013

Kazuyoshi Ueda*
Affiliation:
Department of Chemistry, Graduate School of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya, Yokohama, Kanagawa 240-8501, JAPAN
Tetsuya Ishikawa
Affiliation:
Department of Chemistry, Graduate School of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya, Yokohama, Kanagawa 240-8501, JAPAN
Hitomi Miyamoto
Affiliation:
Department of Chemistry, Graduate School of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya, Yokohama, Kanagawa 240-8501, JAPAN
Daichi Hayakawa
Affiliation:
Department of Chemistry, Graduate School of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya, Yokohama, Kanagawa 240-8501, JAPAN
Get access

Abstract

Cellulose is one of the most abundant renewable resources and has high potential for the use as a future energy and materials for the chemical industries. We have investigated the crystal structure of cellulose IIII by using first principle density functional theory (DFT) calculation. The geometry optimization was performed with variable-cell relaxation with the Quantum ESPRESSO program package. We used Perdew-Burke-Ernzerhof (PBE) functional and compared the results with long-range van der Waals type correction term approach (PBE-D). The results are in good agreement with the experimentally obtained crystal structure of cellulose IIII when we used the PBE-D. Although the calculated cell parameters were slightly smaller than the experimental one, it can be well explained to include the thermal expansion effect in the experimental condition of ambient temperature. From the optimized crystal structure, the CH/O interactions included in the crystal structure were evaluated using NBO method. In this work, we showed that the density functional calculation is a powerful method to investigate the detail structure and the arrangement in the crystal and the nano-structured materials.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Wada, M. Macromolecules 34, 3271 (2001)CrossRefGoogle Scholar
Yui, T. and Hayashi, S. Biomacromolecules 8, 817 (2007)CrossRefGoogle Scholar
Isogai, A., Usuda, M., Kato, T., Uryu, T., Atalla, R.H. Macromolecules 22, 3168(1989)CrossRefGoogle Scholar
Wada, M., Chanzy, H., Nishiyama, Y., and Langan, P., Macromolecules 37, 8548 (2004).CrossRefGoogle Scholar
Bučko, T., Tunega, D., Ángyán, J. G., and Hafner, J., J. Phys. Chem. A 115, 10097 (2011).CrossRefGoogle Scholar
Li, Y., Lin, M., and Davenport, J. W., J. Phys. Chem. C 115, 11533 (2011).CrossRefGoogle Scholar
Kobayashi, T., hayakawa, D., Khishigjargar, T. and Ueda, K. MRS Online Proceedings Library, 1470, mrss12-1470-xx03-05 (2012)Google Scholar
Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G. L., Cococcioni, M., Dabo, I., Corso, A. Dal., Fabris, S., Fratesi, G., de Gironcoli, S., Gebauer, R., Gerstmann, U., Gougoussis, C., Kokalj, A., Lazzeri, M., Martin-Samos, L., Marzari, N., Mauri, F., Mazzarello, R., Paolini, S., Pasquarello, A., Paulatto, L., Sbraccia, C., Scandolo, S., Sclauzero, G., Seitsonen, A. P., Smogunov, A., Umari, P., and Wentzcovitch, R. M., J. Phys. Condens. Matter 21, 395502 (2009).CrossRefGoogle Scholar
Monkhorst, H. J., and Pack, J. D., Phys. Rev. B 13, 5188 (1976).CrossRefGoogle Scholar
Perdew, J. P., Burke, K., and Ernzerhof, M., Phys. Rev. Lett. 77, 3865 (1996).CrossRefGoogle Scholar
Grimme, S. J., J. Comput. Chem. 27, 1787 (2006).CrossRefGoogle Scholar
Glendening, E. D., Badenhoop, J. K., Reed, A. E., Carpenter, J. E., Bohmann, J. A., Morales, C. M., and Weinhold, F. (Theoretical Chemistry Institute, University of Wisconsin, Madison, WI, 2009)Google Scholar
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.Google Scholar
Wada, M., and Hori, R., J. Polymer Sci B: Polymer Phys. 47, 517 (2009).CrossRefGoogle Scholar