Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-25T15:33:24.849Z Has data issue: false hasContentIssue false

Ab Initio Studies of AlSb (001) Adatom Behavior and Reconstruction

Published online by Cambridge University Press:  10 February 2011

N. A. Modine
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185
Hanchul Kim
Affiliation:
Department of Physics, Harvard University, Cambridge, Massachusetts 02138
E. Kaxiras
Affiliation:
Department of Physics, Harvard University, Cambridge, Massachusetts 02138
Get access

Abstract

We discuss a recent investigation of adatom behavior on the AlSb(001) surface using first-principles electronic structure methods based on the density functional theory. For Al and Sb adatoms, we find a number of novel adatom structures that differ dramatically from previous results for the superficially similar group-III arsenides. In particular, we conclude that it is energetically favorable for an Al adatom to incorporate substitutionally into the outermost layer of the AlSb surface. This observation helps motivate a proposed new reconstruction for the AlSb(001) surface. Finally, we argue that the unusual adatom behavior identified for this surface probably results from the presence of a dimer row composed of a double layer of group-V atoms in the reconstruction, and therefore, it should be generic to all of the antimonides, as well as, the c(4 × 4) reconstruction of the arsenides and phosphides.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Thibado, P. M., Bennett, B. R., Shanabrook, B. V., and Whitman, L. J., J. Cryst. Growth 175–176, 317 (1997).Google Scholar
2 Sieger, M. T., Miller, T., and Chiang, T.-C., Phys. Rev. B, 52, 8256 (1995).Google Scholar
3 Resch-Esser, U., Esser, N., Brar, B., and Kroemer, H., Phys. Rev. B, 55, 15401 (1997).Google Scholar
4 Kley, A., Ruggerone, P., and Scheffler, M., Phys. Rev. Lett. 79, 5278 (1997).Google Scholar
5 Harrison, W. A., J. Vac. Sci. Technol., 16, 1492 (1979).Google Scholar
6 Chadi, D. J., J. Vac. Sci. Technol., AS, 834 (1987).Google Scholar
7 Pashley, M. D., Phys. Rev. B, 40, 10481 (1989).Google Scholar
8 Duke, C. B., Surf. Sci., 65, 543 (1993).Google Scholar
9 Northrup, J. E., Phys. Rev. B, 50, 2015 (1994).Google Scholar
10 Zhang, S. B. and Zunger, A., Phys. Rev. B, 53, 1343 (1996).Google Scholar
11 MacPherson, C. D. et al. , Phys. Rev. Lett., 77, 691 (1996).Google Scholar
12 Kresse, G. and Hafner, J., Phys. Rev. B 47, 558 (1993); G. Kresse and J. Hafner, Phys. Rev. B 49, 14251 (1994); G. Kresse and J. Furthmüller, Comput. Mat. Sci. 6, 15 (1996); G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).Google Scholar
13 Vanderbilt, D., Phys. Rev. B 41, 7892 (1990).Google Scholar
14 Barvosa-Carter, W., Bracker, A. S., Culbertson, J. C., Nosho, B. Z., Shanabrook, B. V., Whitman, L. J., Kim, Hanchul, Modine, N. A., and Kaxiras, E., Accepted for publication in Phys. Rev. Lett.Google Scholar