Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-25T15:26:38.390Z Has data issue: false hasContentIssue false

Ab Initio Pseudopotential Calculations of Carbon Impurities in SI

Published online by Cambridge University Press:  03 September 2012

Jing Zhu
Affiliation:
Lawrence Livermore National Laboratory, P.O.Box 808, L-412, Livermore, CA 94551, [email protected]
T. Diaz De La Rubia
Affiliation:
Lawrence Livermore National Laboratory, P.O.Box 808, L-412, Livermore, CA 94551, [email protected]
Christian Mailhiot
Affiliation:
Lawrence Livermore National Laboratory, P.O.Box 808, L-412, Livermore, CA 94551, [email protected]
Get access

Abstract

Ab initio planewave pseudopotential method is used to study carbon diffusion and pairing in crystalline silicon. The calculation is performed with a 40 Ry planewave cutoff and 2×2×2 special k-point sampling with a supercell of 64 atoms. It is found that substitutional carbon attracts interstitial Si forming a <001> C interstitial with a large binding energy of 1.45 eV. The interstitial carbon is mobile and can migrate with a migration energy of 0.5 eV. The interstitial carbon can bind further to another substitutional carbon forming a substitutional carbon-interstitutional carbon pair with a binding energy of 1.0 eV. This model is used to understand the effect of high C concentration on the transient enhanced diffusion in Si.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. For a review, please see Fahey, P. M., Griffin, P. B., and Plummer, J. D., Rev. Mod. Phys. 61, 289 (1989).Google Scholar
2. Mitchel, A. E., Nucl. Instr. Meth. B 37/38, 379 (1989).Google Scholar
3. Zhu, J., Diaz de la Rubia, T., Yang, L. H., Mailhiot, C., and Gilmer, G. H., Phys. Rev. B 54, 4741 (1996)Google Scholar
4. Stolk, P. A., Eaglesham, D. J., Gossmann, H. J., and Poate, J. M., Appl. Phys. Lett. 66, 1370 (1995).Google Scholar
5. Watkins, G. D. and Brower, K. L., Phys. Rev. Lett. 36, 1329 (1976)Google Scholar
6. Song, L. W., Zhan, X. D., Benson, B. W., and Watkins, G. D., Phys. Rev. B 42, 5765 (1990)Google Scholar
7. Capaz, R. B., Pino, A.Dal Jr., and Joannopoulos, J. D., Phys. Rev. B 50, 7439 (1994)Google Scholar
8. Ceperley, D. M. and Alder, B. J., Phys. Rev. Lett. 45, 566 (1980).Google Scholar
9. Perdew, J. P. and Zunger, A., Phys. Rev. B 23, 5048 (1981).Google Scholar
10. Troullier, N. and Martins, J. L., Phys. Rev. B 43, 1993 (1991).Google Scholar
11. Kleinman, L. and Bylander, D. M., Phys. Rev. Lett. 48, 1425 (1982).Google Scholar
12. Monkhorst, H. J. and Pack, J. D., Phys. Rev. B 13, 5188 (1976).Google Scholar
13. Kohn, and Sham, , Phys. Rev. 140, A 1133 (1965).Google Scholar
14. Song, L. W. and Watkins, G. D., Phys. Rev. B 42, 5759 (1990)Google Scholar
15. Rollert, F., Stolwijk, N. A., and Mehrer, H., Proc. 15th Int. Conf. on Defects in Semiconductors, Budapest 1988.Google Scholar
16. Zhu, J., et al, unpublishedGoogle Scholar
17. Perdew, J. P., Chevary, J. A., Vosko, S. H., Jackson, K. A., Pederson, M. R., Singh, D. J., and Fiolhais, C., Phys. Rev. B 46 6671 (1992); 48, 4978 (1993)Google Scholar
18. Tang, M., Colombo, L., Zhu, J., and Diaz de la Rubia, T., Phys. Rev. B, to be published.Google Scholar