Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-25T15:34:49.676Z Has data issue: false hasContentIssue false

AB Initio Calculation of the Polarizability and Hyperpolarizabilrties of Infinite Periodic Polymers by the Sum-Overstates approach

Published online by Cambridge University Press:  25 February 2011

Christian Barbier
Affiliation:
Laboratoire de Chimie Théorique Appliquée, Centre de Recherches sur les Matériaux Avancés, Facultés Universitaires Notre-Dame de la Paix, B-5000 Namur, Belgium
Joseph Delhalle
Affiliation:
Laboratoire de Chimie Théorique Appliquée, Centre de Recherches sur les Matériaux Avancés, Facultés Universitaires Notre-Dame de la Paix, B-5000 Namur, Belgium
Jean-Marie Andre
Affiliation:
Laboratoire de Chimie Théorique Appliquée, Centre de Recherches sur les Matériaux Avancés, Facultés Universitaires Notre-Dame de la Paix, B-5000 Namur, Belgium
Get access

Abstract

We investigate the applicability of the Genkin-Mednis perturbative approach to the ab initio calculation of the static (hyper)polarizabilities of infinite periodic polymers. Test calculations on molecular hydrogen and polyacetylene chains are presented to assess some of the computational problems inherent to the method.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Nonlinear Optical Properties of Organic and Polymeric Materials. edited by Williams, D. J. (Am. Chem. Soc. Symp. Series 233, Washington, 1983).Google Scholar
2. Nonlinear Optical Properties of Organic Molecules and Crystals, edited by Chemla, D.S. and Zyss, J. (Academic Press, New York, 1987).Google Scholar
3. Bodart, V.P., Delhalle, J., André, J. M., Zyss, J., Can. J. Chem. a 1631 (1985); in. Polydiacetylenes : Synthesis. Structure and Electronic Properties, edited by D. Bloor and R. R. Chance (Martinus Nijhof, Dordrecht, 1985).Google Scholar
4. Andrée, J.M., Barbier, C., Bodart, V. P., Delhalle, J., in Ref.[2], Vol.2, pp.137–158.Google Scholar
5. Zyman, J.M., Principles of the Theory of Solids (Cambridge University Press, Cambridge, 1964), pp.1519 Google Scholar
6. Cojan, C., Agrawal, G.P., Flytzanis, C., Phys. Rev. B 15, 909 (1977).Google Scholar
7. Agrawal, G. P., Cojan, C., Flytzanis, C., Phys. Rev. B 17. 776 (1978).Google Scholar
8. Genkin, V. M. and Mednis, P. M., Zh. Eksp. Teor. Fiz. 54, 1137 (1968) [Soy. Phys. JETP 27 609 (1968)].Google Scholar
9. Barbier, C., Chem. Phys. Lett., in press (1987).Google Scholar
10. Flytzanis, C., in Ref. [2], pp.121–135.Google Scholar
11. For a recent review, see André, J. M., Adv. Quant. Chem.. 12, 65 (1980).CrossRefGoogle Scholar
12. Hildebrand, F.B., Introduction to Numerical Analysis (McGraw-Hill, New York, 1956), pp.8284.Google Scholar
13. Ref. [12], p.75.Google Scholar
14. Hehre, W. J., Stewart, R. F., Pople, J.A., J. Chem. Phys., 2657 (1969).Google Scholar
15. Karpfen, A. and Petkov, J., Theor. Chim. Acta a 65 (1979).Google Scholar
16. Andrd, J. M., Delhalle, J., Kapsomos, G., Leroy, G., Chem. Phys. Lett. 14, 485 (1972).CrossRefGoogle Scholar