Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-29T07:39:43.917Z Has data issue: false hasContentIssue false

Ab Initio and Model Calculations on Different Phases of Zirconia

Published online by Cambridge University Press:  10 February 2011

Uwe Schönberger
Affiliation:
Max-Planck Institut ffir Metallforschung, Institut ffir Werkstoffwissenschaft, Seestr. 92, 70174 Stuttgart, Germany.
Mark Wilson
Affiliation:
Max-Planck Institut ffir Metallforschung, Institut ffir Werkstoffwissenschaft, Seestr. 92, 70174 Stuttgart, Germany.
Michael W. Finnis
Affiliation:
Max-Planck Institut ffir Metallforschung, Institut ffir Werkstoffwissenschaft, Seestr. 92, 70174 Stuttgart, Germany.
Get access

Abstract

In order to get a better understanding of the energetics of ZrO2 (zirconia) ab initio calculations with the full potential linear muffin tin orbital method ( fp LMTO) have been performed on the tetragonal structure over a range of c/a and sublattice displacement. A new semi-empirical shell model is developed which makes use of Hartree-Fock calculations and includes compressible anions and quadrupolar distortions. The empirical model predicts energies for tetragonal distortion in agreement with the fp LMTO calculations. Furthermore, it enables us to understand why the seven-fold coordinated monoclinic phase is the low temperature equilibrium structure.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Maita, H. S., Subbarao, E. C. and Srivastava, K. K., Physica status solidi (a) 21, p. 9 (1974)Google Scholar
2. Heuer, A. H. and Riihle, M., Acta Metall. 33, p. 2101 (1985)Google Scholar
3. Rfihle, M., Ma, L. T., Wunderlich, W. and Evans, A. G., Physica B 150, p.86 (1988)Google Scholar
4. Jansen, H. J. F., Phys. Rev. B 43, p.72 67 (1991)Google Scholar
5. Wilson, M., Schönberger, U. and Finnis, M. W., Phys. Rev. B, submitted.Google Scholar
6. Stefanovich, E. V., Shluger, A.L. and Catlow, C.R.A., Phys. Rev. B 49, p.11560 (1994)Google Scholar
7. Dwivedi, A. and Cormack, A. N., Phil. Mag. A 61, p.1 (1990)Google Scholar
8. Methfessel, M., Phys. Rev B 38, p. 1537 (1988) and M. Methfessel, C. O.Rodriguez, O. K. Andersen, Phys. Rev B 40, p.20 0 9 (1989)Google Scholar
9. Hedin, L. and Lundquist, B. I., J. Phys. 4, p.2064 (1971)Google Scholar
10. Jones, R. O., Gunnarsson, O., Rev. Mod. Phys 61, p.689 (1989)Google Scholar
11. Harding, J. H., unpublished work.Google Scholar
12. Wilson, M., Pyper, N. C., Harding, J. H. and Madden, P. A., J. Chem. Phys., to be published.Google Scholar
13. Wilson, M. and Madden, P. A., J. Phys.: Condens. Matter 5, p.2687 (1993) and M. Wilson, P. A. Madden and B. J. C. Cabral, J. Phys. Chem, to be published.Google Scholar
14. Aryasetiawan, F. and Gunnarsson, O., Phys. Rev. B 49, p.7219 (1994)Google Scholar