Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-27T02:38:21.208Z Has data issue: false hasContentIssue false

5f Electronic Structure and Fermiology of Pu Materials

Published online by Cambridge University Press:  01 February 2011

John J. Joyce
Affiliation:
[email protected], Los Alamos National Laboratory, Los Alamos, New Mexico, United States
Tomasz Durakiewicz
Affiliation:
[email protected], Los Alamos National Laboratory, Los Alamos, New Mexico, United States
Kevin S. Graham
Affiliation:
[email protected], Los Alamos National Laboratory, Los Alamos, United States
Eric Bauer
Affiliation:
[email protected], Los Alamos National Laboratory, Los Alamos,, New Mexico, United States
David P. Moore
Affiliation:
[email protected], Los Alamos National Laboratory, Los Alamos,, New Mexico, United States
Jeremy N. Mitchell
Affiliation:
[email protected], Los Alamos National Laboratory, United States
John A. Kennison
Affiliation:
[email protected], Los Alamos National Laboratory, Los Alamos,, New Mexico, United States
T Mark McCleskey
Affiliation:
Quanxi Jia
Affiliation:
Anthony Burrell
Affiliation:
[email protected], United States
Eve Bauer
Affiliation:
[email protected], Los Alamos National Laboratory, Los Alamos,, New Mexico, United States
Richard L. Martin
Affiliation:
[email protected], Los Alamos National Laboratory, Los Alamos,, New Mexico, United States
Lindsay Roy
Affiliation:
[email protected], Savanna River National Laboratory, Aiken, South Carolina, United States
Gustavo E. Scuseria
Affiliation:
[email protected], Rice University, Houston, Texas, United States
Get access

Abstract

We examine the electronic structure of δ-Pu, PuCoGa5, and PuO2 using high resolution as well as angle-resolved photoelectron spectroscopy. The fermiology of the strongly correlated metals δ-Pu and PuCoGa5 is investigated by determining the primary quasiparticle peak position with respect to the Fermi energy as well as the crystal momentum dependence of this peak for PuCoGa5. For the Mott insulator PuO2, the photoemission results are compared against the hybrid functional calculations and the prediction of significant covalency, is found to be reasonable.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Sarrao, J.L., et al., Nature 420, 297 (2002).Google Scholar
2 Prodan, I.D., et al., Phys. Rev. B 76, 33101 (2007).Google Scholar
3 Tobin, J.G., et al., Phys. Rev. B 72, 085109 (2005).Google Scholar
4 Tobin, J.G., et al., J. Phys: Condens Matter 20, 125204 (2008).Google Scholar
5 Durakiewicz, T., et al., Phys. Rev. B 70, 205103 (2004).Google Scholar
6 Gouder, T. et al., Phys. Rev. Lett. 84, 3378 (2000).Google Scholar
7 Arko, A.J., et al., Phys. Rev. B 62, 1773 (2000).Google Scholar
8 Joyce, J.J., et al., Mat. Res. Soc. Symp. Proc. 986, 35 (2007).Google Scholar
9 Wills, J.M., et al., J. Elect. Spectr. and Related Phenom. 135, 163 (2004).Google Scholar
10 Joyce, , et al., Phys. Rev. Lett. 91, 176401 (2003).Google Scholar
11 Eloirdi, R., et al., J. Nuclear Mat., 385, 8 (2009).Google Scholar
12 Prodan, I.D., et al., Phys. Rev. B 73, 045104 (2006).Google Scholar
13 Roy, L.E., et al., J. of Computational Chemistry, 29 (13), 2288 (2008).Google Scholar
14 Burrell, A.K., et al., Adv. Mater. 19, 3559 (2007).Google Scholar