Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-27T02:29:52.091Z Has data issue: false hasContentIssue false

4H-SiC MIS structures using oxidized Ta2Si as high-k dielectric

Published online by Cambridge University Press:  15 March 2011

A. Pérez-Tomás
Affiliation:
Centre Nacional de Microelectrònica (CNM-CSIC) Campus UAB, 08193, Bellaterra, Barcelona, Spain
P. Godignon
Affiliation:
Centre Nacional de Microelectrònica (CNM-CSIC) Campus UAB, 08193, Bellaterra, Barcelona, Spain
N. Mestres
Affiliation:
Institut de ciència de materials (ICMAB-CSIC) Campus UAB, 08193, Bellaterra, Barcelona, Spain
D. Tournier
Affiliation:
Centre Nacional de Microelectrònica (CNM-CSIC) Campus UAB, 08193, Bellaterra, Barcelona, Spain
J. Montserrat
Affiliation:
Centre Nacional de Microelectrònica (CNM-CSIC) Campus UAB, 08193, Bellaterra, Barcelona, Spain
J. Millán
Affiliation:
Centre Nacional de Microelectrònica (CNM-CSIC) Campus UAB, 08193, Bellaterra, Barcelona, Spain
Get access

Abstract

Ta2Si silicide has been deposited by sputtering and thermally oxidized on 4H-SiC and Si substrates. A mixture of SiO2 and Ta2O5 insulator films has been obtained after oxidation in dry O2. Among the high-k dielectrics, tantalum pentoxide (Ta2O5) could be a valuable alternative due to its high dielectric constant. Atomic force microscopy (AFM), C-V measurements along with x-ray diffraction analysis have been carried out in order to study the feasibility of this material as gate dielectric for 4H-SiC MOS devices. Electrical characteristics of deposited and oxidized Ta2Si on 4H-SiC and Si samples have been obtained and compared. At the range of oxidation temperatures considered (850°C-950°C), the influence of diffusion processes between the Si substrate and Ta2Si layer during oxidation strongly influences the dielectric properties of the resulting insulator layer on Si substrates.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Dimitrijev, S., and Jamet, P., Microelectron. Reliab. 43, 225 (2003)Google Scholar
2. Jamet, P., Dimitrijev, S., and Tanner, P., J. Appl. Phys. 90, 1 (2001)Google Scholar
3. Afanas'ev, VV., Bassler, M., Pensl, G., and Schulz, M.J., Phys Stat Sol (a) 162, 321 (1997)Google Scholar
4. Schorner, R., Friedrichs, P., Peters, D., and Stephani, D., IEEE Electron Device Lett. 20, 241 (1999)Google Scholar
5. Wilk, G. D., Wallace, R. M. and Anthony, J. M., J. Appl. Phys. 89, 5243 (2001)Google Scholar
6. Pérez, A., Tournier, D., Montserrat, J., Mestres, N., Sandiumenge, F., Millán, J., Mater. Sci. Forum 457–460, 845 (2004)Google Scholar
7. Moon, B.K., Isobe, C. and Aoyama, J., J. Appl. Phys. 85, 4823 (1999)Google Scholar
8. Chaneliere, C., Four, S., Autran, J. L., Devine, R. A. B., and Sandler, N. P., J. Appl. Phys. 83, 4823 (1998)Google Scholar
9. Atanassova, E., Spassov, D., Paskeleva, A., Koprinarova, J., Georgieva, M., Microelectronics Journal 33, 907 (2002)Google Scholar
10. Joshi, P. C. and Cole, M. W., J. Appl. Phys. 86, 871 (1999)Google Scholar
11. Mattson, M. Strømme, Niklasson, G. A, Forsgren, K. and Hårsta, A. J. Appl. Phys. 85, 2185 (1999)Google Scholar
12. Chaneliere, C., Autran, J. L., Devine, R. A. B. and Balland, B., Mater. Sci. Eng., R. 22, 269 (1998)Google Scholar
13. Saraswat, K. C., Nowicki, R. S., and Moulder, J. F., Appl. Phys. Lett. 41, 1127 (1982)Google Scholar
14. Nicollian, E. H., and Goetzberger, A., Bell Syst. Tech. J., 46, 1055 (1967)Google Scholar
15. Pérez-Tomás, A., Godignon, P., Mestres, N., Montserrat, J., and Millán, J., SubmitedGoogle Scholar