Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-27T02:24:07.004Z Has data issue: false hasContentIssue false

2-D Precursors and Interdiffusion in CdSe/ZnSe Self-Assembled Quantum Dots

Published online by Cambridge University Press:  10 February 2011

M. Dobrowolska*
Affiliation:
Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556, [email protected]
Get access

Abstract

This paper discusses structural and optical data taken on a series of MBE grown samples where n monolayers of CdSe (0.5< n < 2.6) was deposited on (and subsequently capped by) ZnSe. The cross-sectional scanning transmission electron microscopy (STEM) images observed on samples with lowest CdSe coverages reveal the co-existence of 2D ZnCdSe platelets and 3D islands, showing clearly that the platelets act as precursors for the formation of the 3D islands. The STEM data also present direct graphic evidence that interdiffusion plays an important role in the dynamics of CdSe quantum dot formation. The macro- and micro-photoluminescence results fully confirm the STEM data. For coverages below 1.5 monolayers, photoluminescence data show only the emission characteristic of 2D platelets, while for coverages between 1.5 and 1.9 monolayers simultaneous emissions from 2D and 3D islands are observed. The sample obtained by depositing the highest (2.6 monolayer) CdSe coverage shows only the emission characteristic of 3D islands.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Xin, S. H., Wang, P.D., Aie Yin, Kim, C.S., Dobrowolska, M., Merz, J.K., and Furdyna, J.K., Appl. Phys. Lett., 69, 3884 (1996).Google Scholar
2 Leonardi, K., Heinke, H., Ohkawa, K., Hommel, D., Selke, H., Gindele, F., and Woggon, U., Appl. Phys. Lett., 71, 1510 (1997).Google Scholar
3 Kummell, T., Weigand, R., Bacher, G., Forchel, A., Leonardi, K., Hommel, D., and Selke, H., Appl. Phys. Lett., 73, 3105 (1998).Google Scholar
4 Flack, F., Samarth, N., Nikitin, V., Crowell, P.A., Levy, J., and Awschalom, D.D., Phys. Rev. B 54, R17312 (1996).Google Scholar
5 Kirmse, H., Schneider, R., Rabe, M., Neumann, W., and Henneberger, F., Appl. Phys. Lett., 72, 1329 (1998).Google Scholar
6 Lee, S., Daruka, I., Kim, C.S., Barabasi, A.-L., Merz, J.L., and Furdyna, J.K., Phys. Rev. Lett., 81, 3479 (1998).Google Scholar
7 Schikora, D., Schwedhelm, S., As, D. J., Lischka, K., Litvinov, D., Rosenauer, A., Gerthsen, D., Strassburg, M., Hoffmann, A., and Bimberg, D., Appl. Phys. Lett., 76, 418 (2000).Google Scholar
8 Priester and Lannoo, M., Phys. Rev. Lett., 75, 93 (1995).Google Scholar
9 Pennycook, S. J. and Boatner, L. A., Nature, 336, 565 (1998).Google Scholar
10 James, E. M. and Browning, N. D., Ultramicroscopy, 78, 125 (1999).Google Scholar
11 Jesson, D. E. and Pennycook, S. J., Proc. Roy. Soc. (London) A, 449, 273 (1995).Google Scholar
12 Kim, C. S., M. Kim, Furdyna, J. K., Dobrowolska, M., Lee, S., Rho, H., Smith, L. M., Jackson, H. E., James, E. M., Xin, Y., and Browning, N. D., Phys. Rev. Lett., (in press).Google Scholar
13 Nellist, P. D. and Pennycook, S.J., Ultramicroscopy, 78, 111 (1999).Google Scholar
14 Strassburg, M., Kutzer, V., Pohl, V.W., Hoffmann, A., Broser, I., Ledenstsov, N.N., Bimberg, B., Rosenauer, A., Fisher, V., Gerthsen, D., Krestnikov, I.L., Maximov, M.V., Kopev, P.S. and Alferov, Zh. I., Appl. Phys. Lett., 72, 942 (1998).Google Scholar
15 Krestnikov, I. L., Straburg, M., Caesar, M., Hoffmann, A., Pohl, U.W., Bimberg, D., Ledentsov, N.N., Kopev, P.S., Alferov, Zh.I., Litvinov, D., Rosenauer, A., and Gerthsen, D., Phys. Rev. B, 60, 8695 (1999).Google Scholar
16 , Ouadjaout and Marfaing, Y., Phys. Rev. B, 41, 12 096 (1990).Google Scholar
17 Gil, B., Cloitre, T., Blasio, M. Di, Bigenwald, P., Aigouy, L., Briot, N., Briot, O., Bouchara, D., Aulombard, R. L., and CalasB, J.., Phys. Rev. B, 50, 18 231 (1994).Google Scholar
18 Lubyshev, D. I., Gonzalez-Borrero, P.P., Marega, E. Jr., Petitprez, E., Scala, N. La Jr., and Basmaji, P., Appl. Phys. Lett., 68, 205 (1996).Google Scholar
19 Xu, Z. Y., Lu, Z.D., Yang, X. P., Yuan, Z. L., Zheng, B. Z., Xu, J. Z., Ge, W. K., Wang, Y., Wang, J., and Chang, L. L., Phys. Rev. B, Phys. Rev. B, 54, 11528 (1996).Google Scholar
20 Lee, S., Dobrowolska, M., Furdyna, J.K., Luo, H., and Ram-Mohan, L.R., Phys.Rev.B, 54, 16939 (1996).Google Scholar
21 Furdyna, J. K., J. Appl. Phys. 64, R29 (1998).Google Scholar
22 Dobrowolska, M. and Luo, H., Journal of Luminescence 60 and 61, 308 (1994).Google Scholar
23 Kim, C.S., Kim, M., Lee, S., Kossut, J., Furdyna, J.K., and Dobrowolska, M., Journal of Crystal Growth (in press).Google Scholar
24 Furdyna, J.K. and Kossut, J., Superlattices and Microstructures 2, 89 (1986).Google Scholar