Hostname: page-component-6bf8c574d5-9nwgx Total loading time: 0 Render date: 2025-02-18T06:37:03.830Z Has data issue: false hasContentIssue false

2,2'-Spaced-Dipyrroles: Electronic and Steric Effects of the Spacers on Bandgaps and Conductivities of the Corresponding Polymers

Published online by Cambridge University Press:  10 February 2011

A. Berlin
Affiliation:
Dipartimento di Chimica Organica e Industriale dell'Università e Centro CNR Speciali Sistemi Organici, via Golgi 19, 20133 Milano, Italy.
A. Canavesi
Affiliation:
Dipartimento di Chimica Organica e Industriale dell'Università e Centro CNR Speciali Sistemi Organici, via Golgi 19, 20133 Milano, Italy.
G. Pagani
Affiliation:
Dipartimento di Chimica Organica e Industriale dell'Università e Centro CNR Speciali Sistemi Organici, via Golgi 19, 20133 Milano, Italy.
G. Schiavon
Affiliation:
Istituto CNR di Polarografia ed Elettrochimica Preparativa, c.o Stati Uniti 4, 35020 Padova, Italy.
S. Zecchin
Affiliation:
Istituto CNR di Polarografia ed Elettrochimica Preparativa, c.o Stati Uniti 4, 35020 Padova, Italy.
G. Zotti
Affiliation:
Istituto CNR di Polarografia ed Elettrochimica Preparativa, c.o Stati Uniti 4, 35020 Padova, Italy.
Get access

Abstract

Conjugated, conducting pyrrole-based polymers were obtained by electropolymerization of 2,2′-spaced-dipyrroles in which the spacer was a vinylene, or a cyanovinylene, or an azo group. In every case, the bandgap of the polymers is considerably narrower than that of polypyrrole.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. André, J.M., Delhalle, J. and Brédas, J. L. Quantum Chemistry Aided Design of Organic Polymers (World ScientificPublishing, 1991); D.A. dos Santos and J.L. Brddas, Synth. Met. 67, 315 (1994).Google Scholar
2. Wudl, F., Kobayashi, M. and Heeger, A.J., J. Org. Chem. 49, p. 3382 (1984).Google Scholar
3. Lambert, T.M. and Ferraris, J.P., J. Chem. Soc., Chem. Commun. 1991, 752.Google Scholar
4. Lorcy, D. and Cava, M.P., Adv. Mater. 4, 562 (1992).Google Scholar
5. Ono, N., Hironaga, H., Simizu, K., Ono, K., Kuwano, K. and Ogawa, T., J. Chem. Soc., Chem. Commun., 1994, 1019.Google Scholar
6. Yakushi, K., Lauchlan, L.J., Clarke, T.C. and Street, G.B., J. Chem. Phys. 79, 4774 (1983).Google Scholar
7. Havinga, E.E., Hoeve, W.T. and Wynberg, H., Polymer Bull. 29, 119 (1992).Google Scholar
8. Schiavon, G., Zotti, G., Berlin, A., Pagani, G. and Sannicolò, F., Synth. Met. 28, C199 (1989).Google Scholar
9. A. Berlin. Brenna, E., Pagani, G., Sannicolò, F., Zotti, G., Synth. Met. 51, 287 (1992).Google Scholar
10. Berlin, A., Pagani, G., Zotti, G. and Schiavon, G., Makromol. Chem. 193, 399 (1992).Google Scholar
11. Chung, T.C., MacDiarmid, A.G., Feldblum, A. and Heeger, A.J., J. Polym. Sci. Polym. Lett. 20, 427 (1982).Google Scholar
12. McMurry, J.E., Chem. Rev. 89, 1513 (1989).Google Scholar
13. Pagani, G., Berlin, A., Canavesi, A., Zotti, G., Schiavon, G., to be submittedGoogle Scholar
14. Berlin, A., Canavesi, A., Pagani, G., Schiavon, G., Zecchin, G., Zotti, G., Casalbore-Miceli, G., Synth. Met., in press.Google Scholar
15. Zotti, G., Schiavon, G., Berlin, A. and Pagani, G., Electrochimica Acta 34, 881 (1989).Google Scholar
16. Berlin, A., Wernet, W. and Wegner, G., Makromol. Chem. 188, 2963 (1987).Google Scholar