Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-25T15:13:32.177Z Has data issue: false hasContentIssue false

1.3 νm InAs/GaAs Quantum Dots Directly CappedWith GaAs Grown By Metal Organic Chemical Vapor Deposition

Published online by Cambridge University Press:  10 February 2011

K.F. Huang
Affiliation:
Department of Electrical Engineering, National Tsing Hua University, Hsin-Chu, Taiwan 350, R.O.C.
T.P. Hsieh
Affiliation:
Department of Electrical Engineering, National Central University Chung-Li, Taiwan 320, R.O.C
N.T. Yeh
Affiliation:
Telecommunication Laboratories, Chungha Telecom Co., Ltd., Yang-Mei, Taiwan 326, R.O.C. Phone: +886-3-4255139, Fax: +886-3-4254014, E-mail: [email protected]
W.J. Ho
Affiliation:
Telecommunication Laboratories, Chungha Telecom Co., Ltd., Yang-Mei, Taiwan 326, R.O.C. Phone: +886-3-4255139, Fax: +886-3-4254014, E-mail: [email protected]
J.I. Chyi
Affiliation:
Department of Electrical Engineering, National Central University Chung-Li, Taiwan 320, R.O.C
M.C. Wu
Affiliation:
Department of Electrical Engineering, National Tsing Hua University, Hsin-Chu, Taiwan 350, R.O.C.
Get access

Abstract

Systematic studies of the growth temperature and growth rate effect of the formation of InAs/GaAs quantum dots (QDs) have been demonstrated. These QDs are formed with large InAs coverage (3.0 MLs) and periodic growth interruption via Strnski-Krastonov (S-K) epitaxial growth mode by using metalorganic chemical vapor deposition (MOCVD). The room temperature photoluminescence (PL) spectra show red-shift of peak wavelength by decreasing the InAs growth temperature from 540°C to 500°C. As growth rate increases from 0.05 ML/s to 0.2 ML/s at growth temperature of 500°C, PL linewidth could be narrowed and emission intensity could be increased. These results could be correlated to the In clusters and uniformity of InAs/GaAs QDs observed by scanning electron microscopy (SEM) image. Finally, the room temperature photoluminescence spectra of InAs/GaAs QDs directly capped with GaAs shows peak wavelength of 1.35 μm with narrow linewidth of 30.8 meV is obtained.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Arakawa, Y. and Sakaki, H., Appl. Phys. Lett. 40, 939 (1982).Google Scholar
2. Park, G., Shchekin, O. B., Huffaker, D.L. and Deppe, D. G., IEEE Photonics Techno. Lett. 13, 230 (2000).Google Scholar
3. Shchekin, O. B. and Deppe, D. G., IEEE Photonics Techno. Lett. 14, 1231 (2002).Google Scholar
4. Nishi, K., Saito, H., Sugou, S., Lee, J.S., Appl. Phys.Lett 74, 1561 (1999).Google Scholar
5. Yeh, N.T., Nee, T.E. and Chyi, J.I., Appl. Phys. Lett. 76, 1567 (2000).Google Scholar
6. Stintz, A., Liu, G. T., Li, H., Lester, L.F., Malloy, K.J., IEEE Photonics Techno. Lett. 12, 591 (2000).Google Scholar
7. Joyce, P. B., Krzyzewski, T. J., Bell, G. R., Jones, T. S., Malik, S., Childs, D. and Murry, R., Phys. Rev. B 62, 10891 (2000).Google Scholar
8. Nakata, Y., Mukai, K., Sugawara, M., Ohtsubo, K., Ishikawa, H., and Yokoyama, N., J. Cryst. Growth 208, 93 (2000).Google Scholar
9. Tatebayashi, J., Nishioka, M. and Arakawa, Y., Appl. Phys. Lett. 78, 3469 (2001).Google Scholar
10. Bimberg, D., Grunddmann, M. and Ledentsov, N. N., Quantum Dot Herterostuctures (John Wiley & Sons Ltd, 1999) p. 78.Google Scholar
11. Joyce, P. B., Krzyzewski, T. J., Bell, G. R., Jones, T. S., Le Ru, E. C. and Murry, R., Phys. Rev B 64, 235317 (2001).Google Scholar