Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-17T15:18:28.732Z Has data issue: false hasContentIssue false

1 / F Noise Measurements of Interacting Current Filaments in Hydrogenated Amorphous Silicon

Published online by Cambridge University Press:  01 January 1993

C.E. Parman
Affiliation:
The University of Minnesota, School of Physics and Astronomy, Minneapolis, MN 55455, USA
N.E. Israeloff
Affiliation:
The University of Minnesota, School of Physics and Astronomy, Minneapolis, MN 55455, USA
J. Fan
Affiliation:
The University of Minnesota, School of Physics and Astronomy, Minneapolis, MN 55455, USA
J. Kakalios
Affiliation:
The University of Minnesota, School of Physics and Astronomy, Minneapolis, MN 55455, USA
Get access

Abstract

The coplanar current in n-lype doped hydrogenated amorphous silicon (a-Si:H) displays random telegraph switching noise, indicating the presence of inhomogeneous current filaments whose conductance varies with time. There are strong correlations of the 1/f noise power spectra across differing frequency octaves which are much larger than expected if the magnitudes of the fluctuators are varied in parallel. The scale invariant second spectra and the temperature dependence of the spectral slope indicate that hydrogen motion is involved in the cooperative dynamics between noise sources. A model is described wherein the properties of the current filaments are modulated by hydrogen-hydrogen interactions which are mediated by the Si strain fields.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Parman, C., Israeloff, N. and Kakalios, J., Phys. Rev. B 44, 8391 (1991).Google Scholar
2. Parman, C. and Kakalios, J., Phys. Rev. Lett. 67, 2529 (1991).Google Scholar
3. Parman, C. E., Israeloff, N. E. and Kakalios, J. Phys. Rev. Lett. 69, 1097 (1992).Google Scholar
4. Parman, C. E., Israeloff, N. E. and Kakalios, J., Phys. Rev. B, 47 (in press).Google Scholar
5. Restle, P. J., Weissman, M. B. and Black, R. D., J. Appl. Phys. 54, 5844 (1983); Restle, P. J., Hamilton, R. J., Weissman, M. B. amd Love, M. S., Phys. Rev. B 31, 2254 (1985).Google Scholar
6. Israeloff, N. E., Alers, G. B. and Weissman, M. B., Phys. Rev. B 44, 12613 (1991).Google Scholar
7. Weissman, M. B., Rev. Mod. Phys. 60, 537 (1988).Google Scholar
8. Staebler, D. L. and Wronski, C. R., Appl. Phys. Lett. 31, 292 (1976).Google Scholar
9. Rogers, C. T. and Buhrman, R. A., Phys. Rev. Lett. 53, 1272 (1984); Phys. Rev. Lett. 55, 859 (1985).Google Scholar
10. Kakalios, J., Street, R. A. and Jackson, W. B., Phys. Rev. Lett. 59, 1037 (1987).Google Scholar
11. Palmer, R. G., Stein, D. L., Abrahams, E. and Anderson, P. W., Phys. Rev. Lett. 53, 958 (1984).Google Scholar
12. Ogielski, A. T. and Stein, D. L., Phys. Rev. Lett. 55, 1634 (1985).Google Scholar
13. Ralls, K. S. and Buhrman, R. A., Phys. Rev. Lett. 60, 2434 (1988).Google Scholar
14. Fan, J. and Kakalios, J., to be published.Google Scholar
15. Santos, P. V., Johnson, N. M., Street, R. A., Hack, M., Thompson, R. and Tsai, C. C., Phys. Rev. B (in press); Jackson, W. B., Tsai, C. C. and Santos, P. V., J. Non-Cryst. Solids 137 & 138, 21 (1991).Google Scholar
16. Fedders, P. A., Fu, Y. and Drabold, D. A., Phys. Rev. Lett. 68, 1888 (1992).Google Scholar