Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-27T10:29:21.307Z Has data issue: false hasContentIssue false

Rise of the sustainable circular economy platform from waste plastics: A biotechnological perspective

Published online by Cambridge University Press:  09 September 2020

Debajeet K. Bora*
Affiliation:
Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Jain Global Campus, Bangalore562112, India
*
Address all correspondence to Debajeet K. Bora at [email protected], [email protected]
Get access

Abstract

The circular economy aspects of PET (polyethylene terephthalate) waste conversion into value-added products are discussed concerning different governmental policies and industrial protocol for plastic degradation.

The use of microbial enzymes such as PET hydrolase is discussed regarding PET (polyethylene terephthalate) degradation.

The primary purpose of this perspective is a critical analysis of the correlation of the current state-of-the-art rising circular economy platform enacted across the world with close looping of PET (polyethylene terephthalate)-based plastic polymer disposal and sustainable recycling and upcycling technology. The goal of the upcycling process is to get the low-cost value-added monomer than those obtained from the hydrocarbon industry from the sustainability prospect. A summary of the circular bio-economic opportunities has also been described. Next, how the PET hydrolase enzyme degrades the PET plastic is discussed. It is followed by an additional overview of the effect of the mutant enzyme for converting 90% of plastics into the terephthalate monomer. A site-directed mutagenesis procedure obtains this particular mutant enzyme. The diversity of different microbial organism for producing PET hydrolase enzyme is finally discussed with a suggested outlook of the circular economy goal from the viewpoint of plastic degradation objectives soon.

Type
Perspective
Copyright
Copyright ©The Authors, published on behalf of Materials Research Society by Cambridge University Press.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Mancia, A., Chenet, T., Bono, G., Geraci, M.L., Vaccaro, C., Munari, C., Mistri, M., Cavazzini, A., and Pasti, L.: Adverse effects of plastic ingestion on the Mediterranean small-spotted catshark (Scyliorhinus canicula). Mar. Environ. Res. 155, 104876 (2020). doi:10.1016/j.marenvres.2020.104876.Google Scholar
Hale, R.C., Seeley, M.E., La Guardia, M.J., Mai, L., and Zeng, E.Y.: A global perspective on microplastics. J. Geophys. Res. Oceans 125 (2020). doi:10.1029/2018JC014719.Google Scholar
Chen, H., Wang, Y., Sun, X., Peng, Y., and Xiao, L.: Mixing effect of polylactic acid microplastic and straw residue on soil property and ecological function. Chemosphere 243, 125271 (2020). doi:10.1016/j.chemosphere.2019.125271.CrossRefGoogle ScholarPubMed
Cortés, C., Domenech, J., Salazar, M., Pastor, S., Marcos, R., and Hernández, A.: Nanoplastics as a potential environmental health factor: Effects of polystyrene nanoparticles on human intestinal epithelial Caco-2 cells. Environ. Sci. Nano 7, 272285 (2020). doi:10.1039/c9en00523d.Google Scholar
Shirvanimoghaddam, K., Motamed, B., Ramakrishna, S., and Naebe, M.: Death by waste: Fashion and textile circular economy case. Sci. Total Environ. 718, 137317 (2020). doi:10.1016/j.scitotenv.2020.137317.Google ScholarPubMed
Vollmer, I., Jenks, M.J.F., Roelands, M.C.P., White, R.J., van Harmelen, T., de Wild, P., van der Laane, G.P., Meirera, F., Keurentjes, J.T.F., and Weckhuysen, B.M.: Beyond mechanical recycling: Giving new life to plastic waste. Angew. Chem. Int. Ed. doi: 10.1002/anie.201915651.Google Scholar
Sheldon, R.A.: Green chemistry and resource efficiency: Towards a green economy. Green Chem. 18, 31803183 (2016). doi:10.1039/c6gc90040b.Google Scholar
Gomollón-bel, F.: Ten chemical innovations that will change our world. Chem. Int. 41, 1217 (2019).CrossRefGoogle Scholar
Ellen MacArthur Foundation: EMF CE100 US Launch and Sunpower Story (2016). Available at: https://www.ellenmacarthurfoundation.org/assets/downloads/CE100_US_Launch_310316_slides_v1.pdf (accessed May 30, 2020).Google Scholar
Punnett, G.: A PET Circular Economy for the City of Phoenix (ASU Digital Repository, 2018); pp. 131. Available at www.repository.asu.edu.Google Scholar
Carr, A., Fetherston, E., Makled, T., and Meyer, L.: Towards a Circular Plastics Economy: Policy Solutions for Closing the Loop on Plastics (2019); pp. 1–105. Retrieved from: https://deepblue.lib.umich.edu/bitstream/handle/2027.42/148831/Towards%20a%20Circular%20Plastics%20Economy%20-%20Policy%20Solutions%20for%20Closing%20the%20Loop%20on%20Plastics_01.pdf?sequence=1&isAllowed=y (accessed May 30, 2020).Google Scholar
Bales, C. and Hull, E.: Integrating Circular Economy for PET Plastic at Duke University’ s Fuqua School of Business (Duke University, 2019). Available at: www.dukespace.duke.lib.edu.Google Scholar
European Commission: A European strategy for plastics. European Commission 24 (2018). doi:10.1021/acs.est.7b02368.Google Scholar
SusChem: Innovation Agenda in a Circular Economy Research and Innovation Agenda in a Circular Economy. (Suchem, 2018). www.suschem.org.Google Scholar
Zamparutti, T., Mcneill, A., Moora, H., Jõe, M., and Piirsalu, E.: Circular economy with focus on waste, renewable energy and sustainable bioenergy in Estonia. Policy Department A: Economy and Scientific Policy and Quality of Life Policies European (2017). doi:10.2861/066918.CrossRefGoogle Scholar
Sørumsbrenden, J.: Transitioning to a Circular Plastics Economy. A suggestion of indicators for a circular plastics, Master’s thesis (Norwegian University of Science and Technology, 2019). www.ntnuopen.ntnu.no › no.ntnu:inspera:2539904.pdf.Google Scholar
Welle, F.: Circular economy – Considerations on PET recycling. Verpack. Rundsch. 4, 5658 (2019).Google Scholar
Peake, L.: Plastic Waste in the United Kingdom. Plastic Waste and Recycling (Elsevier Inc, 2020). doi:10.1016/b978-0-12-817880-5.00023-2.Google Scholar
Mathews, J. A. and Tan, H. Progress toward a circular economy in China: The drivers (and inhibitors) of the eco-industrial initiative. J. Ind. Ecol. 15, 435457 (2011).CrossRefGoogle Scholar
Kalmykova, Y., Sadagopan, M., and Rosado, L.: Circular economy – From the review of theories and practices to the development of implementation tools. Resour. Conserv. Recycl. 135, 190201 (2018). doi:10.1016/j.resconrec.2017.10.034.CrossRefGoogle Scholar
Payne, J., McKeown, P., and Jones, M.D.: A circular economy approach to plastic waste. Polym. Degrad. Stabil. 165, 170181 (2019). doi:10.1016/j.polymdegradstab.2019.05.014.CrossRefGoogle Scholar
Shonnard, D., Tipaldo, E., Thompson, V., Pearce, J., Caneba, G., and Handler, R.: Systems analysis for PET and olefin polymers in a circular economy. Procedia CIRP 80, 602606 (2019). doi:10.1016/j.procir.2019.01.072.CrossRefGoogle Scholar
Chen, T.L., Kim, H., Pan, S.Y., Tseng, P.C., Lin, Y.P., and Chiang, P.C.: Implementation of green chemistry principles in the circular economy system towards sustainable development goals: Challenges and perspectives. Sci. Total Environ. 716, 136998 (2020). doi:10.1016/j.scitotenv.2020.136998.CrossRefGoogle Scholar
To, M.H., Uisan, K., Ok, Y.S., Pleissner, D., and Lin, C.S.K.: Recent trends in green and sustainable chemistry: Rethinking textile waste in a circular economy. Curr. Opin. Green Sustain. Chem. 20, 110 (2019). doi:10.1016/j.cogsc.2019.06.002.CrossRefGoogle Scholar
Ozola, Z.U., Vesere, R., Kalnins, S.N., and Blumberg, D.: Paper waste recycling. circular economy aspects. Environ. Clim. Technol. 23, 260273 (2019). doi:10.2478/rtuect-2019-0094.CrossRefGoogle Scholar
Gitelman, L., Magaril, E., Kozhevnikov, M., and Rada, E.C.: Rational behavior of an enterprise in the energy market in a circular economy. Resources 8 (2019). doi:10.3390/resources8020073.CrossRefGoogle Scholar
Cousins, F., Broyles Yost, T., and Bender, G.: Think circular—Reducing embodied carbon through materials selection. MRS Energy Sustain. 5, 20182021 (2018). doi:10.1557/mre.2018.3.CrossRefGoogle Scholar
Maina, S., Kachrimanidou, V., and Koutinas, A.: A roadmap towards a circular and sustainable bioeconomy through waste valorization. Curr. Opin. Green Sustain. Chem. 8, 1823 (2017). doi:10.1016/j.cogsc.2017.07.007.CrossRefGoogle Scholar
Nizami, A.S., Rehan, M., Waqas, M., Naqvi, M., Ouda, O.K.M., Shahzad, K., Miandad, R., Khan, M.Z., Syamsiro, M., Ismail, I.M.I., and Pant, D.: Waste biorefineries: Enabling circular economies in developing countries. Bioresour. Technol. 241, 11011117 (2017). doi:10.1016/j.biortech.2017.05.097.CrossRefGoogle ScholarPubMed
Venkata Mohan, S., Nikhil, G.N., Chiranjeevi, P., Nagendranatha Reddy, C., Rohit, M.V., Kumar, A.N., and Sarkar, O.: Waste biorefinery models towards sustainable circular bioeconomy: Critical review and future perspectives. Bioresour. Technol. 215, 212 (2016). doi:10.1016/j.biortech.2016.03.130.CrossRefGoogle ScholarPubMed
Paul, S.C. and Paul, S.: Biowaste to Bio-products through Hybrid Thermochemical and Biochemical Conversion: A Circular Economy Concept (2017). Available at: https://atrium.lib.uoguelph.ca/xmlui/bitstream/handle/10214/11564/Paul_Subhash_201709_PhD.pdf?sequence=1&isAllowed=y.Google Scholar
Bell, J., Paula, L., Dodd, T., Németh, S., Nanou, C., Mega, V., and Campos, P.: EU ambition to build the world's leading bioeconomy—Uncertain times demand innovative and sustainable solutions. New Biotechnol. 40, 2530 (2018). doi:10.1016/j.nbt.2017.06.010.CrossRefGoogle ScholarPubMed
Aguilar, A., Twardowski, T., and Wohlgemuth, R.: Bioeconomy for sustainable development. Biotechnol. J. 14, 111 (2019). doi:10.1002/biot.201800638.CrossRefGoogle ScholarPubMed
Meyer, V., Basenko, E.Y., Benz, J.P., Braus, G.H., Caddick, M.X., Csukai, M., de Vries, R.P., Endy, D., Frisvad, J.C., Gunde-Cimerman, N., Haarmann, T., Hadar, Y., Hansen, K., Johnson, R.I., Keller, N.P., Kraševec, N., Mortensen, U.H., Perez, R., Ram, A.F.J., Record, E., Ross, P., Shapaval, V., Steiniger, C., van den Brink, H., van Munster, J., Yarden, O., and Wösten, H.A.B.: Growing a circular economy with fungal biotechnology: A white paper. Fungal Biol. Biotechnol. 7, 123 (2020). doi:10.1186/s40694-020-00095-zCrossRefGoogle ScholarPubMed
Blank, L.M., Narancic, T., Mampel, J., Tiso, T., and O'Connor, K.: Biotechnological upcycling of plastic waste and other non-conventional feedstocks in a circular economy. Curr. Opin. Biotechnol. 62, 212219 (2020). doi:10.1016/j.copbio.2019.11.011.CrossRefGoogle Scholar
Allen, R.D.: Waste PET: A renewable resource. Joule 3, 910 (2019). doi:10.1016/j.joule.2019.04.002.CrossRefGoogle Scholar
Britt, P., Byers, J., Chen, E., Coates, G., Coughlin, B., Ellison, C., Garcia, J., Goldman, A., Guzman, J., Hartwig, J., Helms, B., Huber, G., Jenks, C., Martin, J., McCann, M., Miller, S., O'Neill, H., Sadow, A., Scott, S., Sita, L., Vlachos, D., Winey, K., and Waymouth, R.: Basic Energy Sciences Roundtable: Chemical Upcycling of Polymers (2019). Available at: https://winey.seas.upenn.edu/wp-content/uploads/2017/08/2019_DOE_Polymer_Upcycling_Brochure.pdf.Google Scholar
Rorrer, N.A., Nicholson, S., Carpenter, A., Biddy, M.J., Grundl, N.J., and Beckham, G.T.: Combining reclaimed PET with bio-based monomers enables plastics upcycling. Joule 3, 10061027 (2019). doi:10.1016/j.joule.2019.01.018.CrossRefGoogle Scholar
Wierckx, N., Prieto, M.A., Pomposiello, P., de Lorenzo, V., O'Connor, K., and Blank, L.M.: Plastic waste as a novel substrate for industrial biotechnology. Microb. Biotechnol. 8, 900903 (2015). doi:10.1111/1751-7915.12312.CrossRefGoogle ScholarPubMed
Ganesh Kumar, A., Anjana, K., Hinduja, M., Sujitha, K., and Dharani, G.: Review on plastic wastes in the marine environment – Biodegradation and biotechnological solutions. Mar. Pollut. Bull. 150, 110733 (2020). doi:10.1016/j.marpolbul.2019.110733.Google Scholar
Bombelli, P., Howe, C.J., and Bertocchini, F.: Polyethylene bio-degradation by caterpillars of the wax moth Galleria mellonella. Curr. Biol. 27, R292R293 (2017). doi:10.1016/j.cub.2017.02.060.CrossRefGoogle ScholarPubMed
Paço, A., Jacinto, J., da Costa, J.P., Santos, P.S.M., Vitorino, R., Duarte, A.C., and Rocha-Santos, T.: Biotechnological tools for the effective management of plastics in the environment. Crit. Rev. Environ. Sci. Technol. 49, 410441 (2019). doi:10.1080/10643389.2018.1548862.CrossRefGoogle Scholar
Wang, P., Sergeeva, M.V., Lim, L., and Dordick, J.S.: Biocatalytic plastics as active and stable materials for biotransformations. Nat. Biotechnol. 15, 789793 (1997). doi:10.1038/nbt0897-789.CrossRefGoogle ScholarPubMed
Chen, H., Dong, F., and Minteer, S.D.: The progress and outlook of bioelectrocatalysis for the production of chemicals, fuels and materials. Nat. Catal. 3, 225244 (2020). doi:10.1038/s41929-019-0408-2.CrossRefGoogle Scholar
Pellis, A., Herrero Acero, E., Ferrario, V., Ribitsch, D., Guebitz, G.M., and Gardossi, L.: The closure of the cycle: Enzymatic synthesis and functionalization of bio-based polyesters. Trends Biotechnol. 34, 316328 (2016). doi:10.1016/j.tibtech.2015.12.009.CrossRefGoogle ScholarPubMed
Yoshida, S., Hiraga, K., Takehana, T., Taniguchi, I., Yamaji, H., Maeda, Y., Toyohara, K., Miyamoto, K., Kimura, Y., and Oda, K.: A bacterium that degrades and assimilates poly(ethylene terephthalate). Science 351, 11961199 (2016). doi:10.1126/science.aad6359.CrossRefGoogle Scholar
Bao, R., He, L.H., and Liu, B.: Enzymatic and structural characterization of the poly(ethylene terephthalate) hydrolase PETase from I. sakaiensis (2018). doi:10.2210/pdb5yfe/pdb.CrossRefGoogle Scholar
Hess, M., Sczyrba, A., Egan, R., Kim, T., Chokhawala, H., Schroth, G., Luo, S., Clark, D.S., Chen, F., Zhang, T., Mackie, R.I., Pennacchio, L.A., Tringe, S.G., Visel, A., Woyke, T., Wang, Z., and Rubin, E.M.: Metagenomic discovery of biomass-degrading genes and genomes from cow rumen. Science 331, 463467 (2011). doi:10.1126/science.1200387.CrossRefGoogle ScholarPubMed
Danso, D., Chow, J., and Streita, W.R.: Plastics: Environmental and biotechnological perspectives on microbial degradation. Appl. Environ. Microbiol. 85, 114 (2019).CrossRefGoogle ScholarPubMed
Sheth, M.U., Kwartler, S.K., Schmaltz, E.R., Hoskinson, S.M., Martz, E.J., Dunphy-Daly, M.M., Schultz, T.F., Edward, W.C., Read, A.J., and Somarelli, J.A.: Bioengineering a future free of marine plastic waste. Front. Mar. Sci. 6, 110 (2019). doi:10.3389/fmars.2019.00624.CrossRefGoogle Scholar
Service, R.: 'A huge step forward.' The mutant enzyme could vastly improve recycling of plastic bottles. Science 19 (2020). doi:10.1126/science.abc1556.Google Scholar
Tournier, V., Topham, C.M., Gilles, A., David, B., Folgoas, C., Moya-Leclair, E., Kamionka, E., Desrousseaux, M.-L., Texier, H., Gavalda, S., Cot, M., Guémard, E., Dalibey, M., Nomme, J., Cioci, G., Barbe, S., Chateau, M., André, I., Duquesne, S., and Marty, A.: An engineered PET depolymerase to break down and recycle plastic bottles. Nature 580, 216219 (2020). doi:10.1038/s41586-020-2149-4.CrossRefGoogle ScholarPubMed
Chen, Z., Wang, Y., Cheng, Y., Wang, X., Tong, S., Yang, H., and Wang, Z.: Efficient biodegradation of highly crystallized polyethylene terephthalate through cell surface display of bacterial PETase. Sci. Total Environ. 709, 136138 (2020). doi:10.1016/j.scitotenv.2019.136138.CrossRefGoogle ScholarPubMed
de Castro, A.M. and Carniel, A.: A novel process for poly(ethylene terephthalate) depolymerization via enzyme-catalyzed glycolysis. Biochem. Eng. J. 124, 6468 (2017). doi:10.1016/j.bej.2017.04.011.CrossRefGoogle Scholar
Papadopoulou, A., Hecht, K., and Buller, R.: Enzymatic PET degradation. Chimia 73, 743749 (2019). doi:10.2533/chimia.2019.743.CrossRefGoogle ScholarPubMed
Littlechild, J.A.: Improving the ‘tool box’ for robust industrial enzymes. J. Ind. Microbiol. Biotechnol. 44, 711720 (2017). doi:10.1007/s10295-017-1920-5.CrossRefGoogle ScholarPubMed
Bhardwaj, H., Gupta, R., and Tiwari, A.: Communities of microbial enzymes associated with biodegradation of plastics. J. Polym. Environ. 21, 575579 (2013). doi:10.1007/s10924-012-0456-z.CrossRefGoogle Scholar
Salvador, M., Abdulmutalib, U., Gonzalez, J., Kim, J., Smith, A.A., Faulon, J.L., Wei, R., Zimmermann, W., and Jimenez, J.I.: Microbial genes for a circular and sustainable bio-PET economy. Genes 10, 115 (2019). doi:10.3390/genes10050373.CrossRefGoogle ScholarPubMed
Shinozaki, Y., Morita, T., Cao, X.H., Yoshida, S., Koitabashi, M., Watanabe, T., Suzuki, K., Sameshima- Yamashita, Y., Nakajima-Kambe, T., Fujii, T., and Kitamoto, H.K.: Biodegradable plastic-degrading enzyme from Pseudozyma antarctica: Cloning, sequencing, and characterization. Appl. Microbiol. Biotechnol. 97, 29512959 (2013). doi:10.1007/s00253-012-4188-8.CrossRefGoogle ScholarPubMed
Espinosa, M.J.C., Blanco, A.C., Schmidgall, T., Atanasoff-Kardjalieff, A.K., Kappelmeyer, U., Tischler, D., Pieper, D.H., Heipieper, H.J., and Eberlein, C.: Toward biorecycling: Isolation of a soil bacterium that grows on a polyurethane oligomer and monomer. Front. Microbiol. 11 (2020). doi:10.3389/fmicb.2020.00404.CrossRefGoogle ScholarPubMed
Ji, J., Zhang, Y., Liu, Y., Zhu, P., and Yan, X.: Biodegradation of plastic monomer 2,6-dimethylphenol by Mycobacterium neoaurum B5-4. Environ. Pollut. 258, 113793 (2020). doi:10.1016/j.envpol.2019.113793.CrossRefGoogle ScholarPubMed