Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-27T09:52:14.011Z Has data issue: false hasContentIssue false

Metal–organic frameworks for chemical conversion of carbon dioxide

Published online by Cambridge University Press:  22 September 2020

Claudio Pettinari*
Affiliation:
School of Pharmacy and University of Camerino, Via S. Agostino 1, 62032Camerino, MC, Italy Istituto di Chimica dei Composti Organometallici (ICCOM-CNR), Via Madonna del Piano 10, 50019Sesto Fiorentino, Italy
Alessia Tombesi
Affiliation:
School of Pharmacy and University of Camerino, Via S. Agostino 1, 62032Camerino, MC, Italy
*
Address all correspondence to Claudio Pettinari at [email protected]
Get access

Abstract

Role of MOFs in CO2 chemical conversion; Photocatalytic and electrocatalytic CO2 reduction; Role of linkers and metals in CO2 chemical conversion; and MOF composites and films in CO2 conversion.

In this review, we analyze the emerging field of metal–organic frameworks (MOFs) as catalysts for chemical conversion of CO2, with examples ranging from heterogeneous CO2 organic transformation to heterogeneous CO2 hydrogenation, from photocatalytic to electrocatalytic CO2 reduction. We also discuss the role of MOF composites and films in CO2 transformation. Our goal is to have an instrument useful to identify the best MOFs for CO2 conversion.

Type
Review Article
Copyright
Copyright © The Author, 2020, published on behalf of Materials Research Society by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Chu, S.: Carbon capture and sequestration. Science 325, 1599 (2009).CrossRefGoogle ScholarPubMed
Lu, A.H. and Hao, G.P.: Porous materials for carbon dioxide capture. Annu. Rep. Prog. Chem. A 109, 484 (2013).CrossRefGoogle Scholar
Tu, W., Zhou, Y., and Zou, Z.: Photocatalytic conversion of CO2 into renewable hydrocarbon fuels: State-of-the-art accomplishment, challenges, and prospects. Adv. Mater. 26, 4607 (2014).CrossRefGoogle ScholarPubMed
Qiao, J., Liu, Y., Hong, F., and Zhang, J.: A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels. Chem. Soc. Rev. 43, 631 (2014).CrossRefGoogle ScholarPubMed
Rahmani, F., Haghighi, M., Estifaee, P., and Rahimpour, M.R.: A comparative study of two different membranes applied for auto-thermal methanol synthesis process. J. Nat. Gas Sci. Eng. 7, 60 (2012).CrossRefGoogle Scholar
Yasuda, H., He, L.N., Sakakura, T., and Hu, C.: Efficient synthesis of cyclic carbonate from carbon dioxide catalyzed by polyoxometalate: The remarkable effects of metal substitution. J. Catal. 233, 119 (2005).CrossRefGoogle Scholar
Hudson, M.R., Queen, W.L., Mason, J.A., Fickel, D.W., Lobo, R.F., and Brown, C.M.: Unconventional, highly selective CO2 adsorption in zeolite SSZ-13. J. Am. Chem. Soc. 134, 1970 (2012).CrossRefGoogle ScholarPubMed
Zhang, Y., Li, B., Williams, K., Gao, W.Y., and Ma, S.: A new microporous carbon material synthesized via thermolysis of a porous aromatic framework embedded with an extra carbon source for low-pressure CO2 uptake. Chem. Commun. 49, 10269 (2013).CrossRefGoogle ScholarPubMed
Chughtai, A.H., Ahmad, N., Younus, H.A., Laypkov, A., and Verpoort, F.: Metal-organic frameworks: Versatile heterogeneous catalysts for efficient catalytic organic transformations. Chem. Soc. Rev. 44, 6804 (2015).CrossRefGoogle ScholarPubMed
Gascon, J., Corma, A., Kapteijn, F., Llabrés, I., and Xamena, F.X.: Metal organic framework catalysis: Quo vadis? ACS Catal. 4, 361 (2014).CrossRefGoogle Scholar
Nguyen, P.T.K., Nguyen, H.T.D., Nguyen, H.N., Trickett, C.A., Ton, Q.T., Gutiérrez-Puebla, E., Monge, M.A., Cordova, K.E., and Gándara, F.: New metal-organic frameworks for chemical fixation of CO2. ACS Appl. Mater. Interfaces 10, 733 (2018).CrossRefGoogle ScholarPubMed
Chen, F., Dong, T., Xu, T., Li, X., and Hu, C.: Direct synthesis of cyclic carbonates from olefins and CO2 catalyzed by a MoO2(acac)2-quaternary ammonium salt system. Green Chem. 13, 2518 (2011).CrossRefGoogle Scholar
Han, Q., He, C., Zhao, M., Qi, B., Niu, J., and Duan, C.: Engineering chiral polyoxometalate hybrid metal-organic frameworks for asymmetric dihydroxylation of olefins. J. Am. Chem. Soc. 135, 10186 (2013).CrossRefGoogle ScholarPubMed
Zalomaeva, O.V., Chibiryaev, A.M., Kovalenko, K.A., Kholdeeva, O.A., Balzhinimaev, B.S., and Fedin, V.P.: Cyclic carbonates synthesis from epoxides and CO2 over metal-organic framework Cr-MIL-101. J. Catal. 298, 179 (2013).CrossRefGoogle Scholar
Cho, H.Y., Yang, D.A., Kim, J., Jeong, S.Y., and Ahn, W.S.: CO2 adsorption and catalytic application of Co-MOF-74 synthesized by microwave heating. Catal. Today 185, 35 (2012).CrossRefGoogle Scholar
Guillerm, V., Weseliński, ŁJ, Belmabkhout, Y., Cairns, A.J., D'Elia, V., Wojtas, Ł, Adil, K., and Eddaoudi, M.: Discovery and introduction of a (3,18)-connected net as an ideal blueprint for the design of metal-organic frameworks. Nat. Chem. 6, 673 (2014).CrossRefGoogle ScholarPubMed
Beyzavi, M.H., Klet, R.C., Tussupbayev, S., Borycz, J., Vermeulen, N.A., Cramer, C.J., Stoddart, J.F., Hupp, J.T., and Farha, O.K.: A hafnium-based metal-organic framework as an efficient and multifunctional catalyst for facile CO2 fixation and regioselective and enantioretentive epoxide activation. J. Am. Chem. Soc. 136, 15861 (2014).CrossRefGoogle ScholarPubMed
Zou, R., Li, P.-Z., Zeng, Y.-F., Liu, J., Zhao, R., Duan, H., Luo, Z., Wang, J.-G., Zou, R., and Zhao, Y.: Bimetallic metal-organic frameworks: Probing the lewis acid site for CO2 conversion. Small 12, 2334 (2016).CrossRefGoogle ScholarPubMed
Wang, S., Yang, L., He, G., Shi, B., Li, Y., Wu, H., Zhang, R., Nunes, S., and Jiang, Z.: Two-dimensional nanochannel membranes for molecular and ionic separations. Chem. Soc. Rev. 49, 1071 (2020).CrossRefGoogle ScholarPubMed
Gao, W.Y., Chen, Y., Niu, Y., Williams, K., Cash, L., Perez, P.J., Wojtas, L., Cai, J., Chen, Y.S., and Ma, S.: Crystal engineering of an nbo topology metal-organic framework for chemical fixation of CO2 under ambient conditions. Angew. Chem. Int. Ed. 53, 2615 (2014).CrossRefGoogle ScholarPubMed
Ma, D., Li, B., Liu, K., Zhang, X., Zou, W., Yang, Y., Li, G., Shi, Z., and Feng, S.: Bifunctional MOF heterogeneous catalysts based on the synergy of dual functional sites for efficient conversion of CO2 under mild and co-catalyst free conditions. J. Mater. Chem. A 3, 23136 (2015).CrossRefGoogle Scholar
Zhou, Z., He, C., Xiu, J., Yang, L., and Duan, C.: Metal-organic polymers containing discrete single-walled nanotube as a heterogeneous catalyst for the cycloaddition of carbon dioxide to epoxides. J. Am. Chem. Soc. 137, 15066 (2015).CrossRefGoogle ScholarPubMed
Gao, W.Y., Chen, Y., Niu, Y., Williams, K., Cash, L., Perez, P.J., Wojtas, L., Cai, J., Chen, Y.S., and Ma, S.: Crystal engineering of an nbo topology metal-organic framework for chemical fixation of CO2 under ambient conditions. Angew. Chem. Int. Ed. 53, 2615 (2014).CrossRefGoogle ScholarPubMed
Kathalikkattil, A.C., Roshan, R., Tharun, J., Babu, R., Jeong, G.S., Kim, D.W., Cho, S.J., and Park, D.W.: A sustainable protocol for the facile synthesis of zinc-glutamate MOF: An efficient catalyst for room temperature CO2 fixation reactions under wet conditions. Chem. Commun. 52, 280 (2016).CrossRefGoogle ScholarPubMed
Rachuri, Y., Kurisingal, J.F., Chitumalla, R.K., Vuppala, S., Gu, Y., Jang, J., Choe, Y., Suresh, E., and Park, D.W.: Adenine-based Zn(II)/Cd(II) metal-organic frameworks as efficient heterogeneous catalysts for facile CO2 fixation into cyclic carbonates: A DFT-supported study of the reaction mechanism. Inorg. Chem. 58, 11389 (2019).CrossRefGoogle ScholarPubMed
Miralda, C.M., MacIas, E.E., Zhu, M., Ratnasamy, P., and Carreon, M.A.: Zeolitic imidazole framework-8 catalysts in the conversion of CO2 to chloropropene carbonate. ACS Catal. 2, 180 (2012).CrossRefGoogle Scholar
Kim, Y.J. and Park, D.W.: Functionalized IRMOF-3: An efficient heterogeneous catalyst for the cycloaddition of allyl glycidyl ether and CO2. J. Nanosci. Nanotechnol. 13, 2307 (2013).CrossRefGoogle ScholarPubMed
Song, J., Zhang, Z., Hu, S., Wu, T., Jiang, T., and Han, B.: MOF-5/n-Bu4NBr: An efficient catalyst system for the synthesis of cyclic carbonates from epoxides and CO2 under mild conditions. Green Chem. 11, 1031 (2009).CrossRefGoogle Scholar
Zhang, L., Yuan, S., Feng, L., Guo, B., Qin, J.-S., Xu, B., Lollar, C., Sun, D., and Zhou, H.-C.: Pore-environment engineering with multiple metal sites in rare-earth porphyrinic metal-organic frameworks. Angew. Chem. Int. Ed. 57, 5095 (2018).CrossRefGoogle ScholarPubMed
Ji, X.H., Zhu, N.N., Ma, J.G., and Cheng, P.: Conversion of CO2 into cyclic carbonates by a Co(ii) metal-organic framework and the improvement of catalytic activity: Via nanocrystallization. Dalt. Trans. 47, 1768 (2018).CrossRefGoogle ScholarPubMed
Feng, D., Chung, W.C., Wei, Z., Gu, Z.Y., Jiang, H.L., Chen, Y.P., Darensbourg, D.J., and Zhou, H.C.: Construction of ultrastable porphyrin Zr metal-organic frameworks through linker elimination. J. Am. Chem. Soc. 135, 17105 (2013).CrossRefGoogle ScholarPubMed
Gao, W.-Y., Chen, Y., Niu, Y., Williams, K., Cash, L., Perez, P.J., Wojtas, L., Cai, J., Chen, Y.-S., and Ma, S.: Crystal engineering of an nbo topology metal-organic framework for chemical fixation of CO2 under ambient conditions. Angew. Chem. Int. Ed. 53, 2615 (2014).CrossRefGoogle ScholarPubMed
Kleist, W., Jutz, F., Maciejewski, M., and Baiker, A.: Mixed-linker metal-organic frameworks as catalysts for the synthesis of propylene carbonate from propylene oxide and CO2. Eur. J. Inorg. Chem. 2009, 3552 (2009).CrossRefGoogle Scholar
Lescouet, T., Chizallet, C., and Farrusseng, D.: The origin of the activity of amine-functionalized metal-organic frameworks in the catalytic synthesis of cyclic carbonates from epoxide and CO2. ChemCatChem 4, 1725 (2012).CrossRefGoogle Scholar
Kim, J., Kim, S.N., Jang, H.G., Seo, G., and Ahn, W.S.: CO2 cycloaddition of styrene oxide over MOF catalysts. Appl. Catal. A Gen. 453, 175 (2013).CrossRefGoogle Scholar
Beyzavi, M.H., Stephenson, C.J., Liu, Y., Karagiaridi, O., Hupp, J.T., and Farha, O.K.: Metal-organic framework-based catalysts: Chemical fixation of CO2 with epoxides leading to cyclic organic carbonates. Front. Energy Res. 3, 63 (2015).Google Scholar
Vismara, R., Tuci, G., Mosca, N., Domasevitch, K.V., Di Nicola, C., Pettinari, C., Giambastiani, G., Galli, S., and Rossin, A.: Amino-decorated bis(pyrazolate) metal–organic frameworks for carbon dioxide capture and green conversion into cyclic carbonates. Inorg. Chem. Front. 6, 533 (2019).CrossRefGoogle Scholar
Müller, P., Bucior, B., Tuci, G., Luconi, L., Getzschmann, J., Kaskel, S., Snurr, R.Q., Giambastiani, G., and Rossin, A.: Computational screening, synthesis and testing of metal-organic frameworks with a bithiazole linker for carbon dioxide capture and its green conversion into cyclic carbonates. Mol. Syst. Des. Eng. 4, 1000 (2019).CrossRefGoogle Scholar
Babu, R., Kathalikkattil, A.C., Roshan, R., Tharun, J., Kim, D.W., and Park, D.W.: Dual-porous metal organic framework for room temperature CO2 fixation via cyclic carbonate synthesis. Green Chem. 18, 232 (2015).CrossRefGoogle Scholar
Cao, C.S., Shi, Y., Xu, H., and Zhao, B.: A multifunctional MOF as a recyclable catalyst for the fixation of CO2 with aziridines or epoxides and as a luminescent probe of Cr(VI). Dalt. Trans. 47, 4545 (2018).CrossRefGoogle Scholar
Kumar, S., Verma, G., Gao, W.-Y., Niu, Z., Wojtas, L., and Ma, S.: Anionic metal-organic framework for selective dye removal and CO2 fixation. Eur. J. Inorg. Chem. 2016, 4373 (2016).CrossRefGoogle Scholar
Li, X.Y., Ma, L.N., Liu, Y., Hou, L., Wang, Y.Y., and Zhu, Z.: Honeycomb metal-organic framework with lewis acidic and basic bifunctional sites: Selective adsorption and CO2 catalytic fixation. ACS Appl. Mater. Interfaces 10, 10965 (2018).CrossRefGoogle ScholarPubMed
He, H., Sun, Q., Gao, W., Perman, J.A., Sun, F., Zhu, G., Aguila, B., Forrest, K., Space, B., and Ma, S.: A stable metal-organic framework featuring a local buffer environment for carbon dioxide fixation. Angew. Chem. Int. Ed. 57, 4657 (2018).CrossRefGoogle ScholarPubMed
Ansari, S.N., Kumar, P., Gupta, A.K., Mathur, P., and Mobin, S.M.: Catalytic CO2 fixation over a robust lactam-functionalized Cu(II) metal organic framework. Inorg. Chem. 58, 9723 (2019).CrossRefGoogle Scholar
Liang, L., Liu, C., Jiang, F., Chen, Q., Zhang, L., Xue, H., Jiang, H.L., Qian, J., Yuan, D., and Hong, M.: Carbon dioxide capture and conversion by an acid-base resistant metal-organic framework. Nat. Commun. 8, 1 (2017).CrossRefGoogle ScholarPubMed
Zhou, X., Zhang, Y., Yang, X., Zhao, L., and Wang, G.: Functionalized IRMOF-3 as efficient heterogeneous catalyst for the synthesis of cyclic carbonates. J. Mol. Catal. A Chem. 361–362, 12 (2012).CrossRefGoogle Scholar
Tharun, J., Bhin, K.M., Roshan, R., Kim, D.W., Kathalikkattil, A.C., Babu, R., Ahn, H.Y., Won, Y.S., and Park, D.W.: Ionic liquid tethered post functionalized ZIF-90 framework for the cycloaddition of propylene oxide and CO2. Green Chem. 18, 2479 (2016).CrossRefGoogle Scholar
Kaneti, Y.V., Dutta, S., Hossain, M.S.A., Shiddiky, M.J.A., Tung, K.L., Shieh, F.K., Tsung, C.K., Wu, K.C.W., and Yamauchi, Y.: Strategies for improving the functionality of zeolitic imidazolate frameworks: Tailoring nanoarchitectures for functional applications. Adv. Mater. 29, 1700213 (2017).CrossRefGoogle ScholarPubMed
Bhin, K.M., Tharun, J., Roshan, K.R., Kim, D.W., Chung, Y., and Park, D.W.: Catalytic performance of zeolitic imidazolate framework ZIF-95 for the solventless synthesis of cyclic carbonates from CO2 and epoxides. J. CO2 Util. 17, 112 (2017).CrossRefGoogle Scholar
Liang, J., Xie, Y.Q., Wang, X.S., Wang, Q., Liu, T.T., Huang, Y.B., and Cao, R.: An imidazolium-functionalized mesoporous cationic metal-organic framework for cooperative CO2 fixation into cyclic carbonate. Chem. Commun. 54, 342 (2018).CrossRefGoogle ScholarPubMed
Manjolinho, F., Arndt, M., Gooßen, K., and Gooßen, L.J.: Catalytic C-H carboxylation of terminal alkynes with carbon dioxide. ACS Catal. 2, 2014 (2012).CrossRefGoogle Scholar
Xiong, G., Yu, B., Dong, J., Shi, Y., Zhao, B., and He, L.N.: Cluster-based MOFs with accelerated chemical conversion of CO2 through C-C bond formation. Chem. Commun. 53, 6013 (2017).CrossRefGoogle ScholarPubMed
Zhang, Y., Li, B., Krishna, R., Wu, Z., Ma, D., Shi, Z., Pham, T., Forrest, K., Space, B., and Ma, S.: Highly selective adsorption of ethylene over ethane in a MOF featuring the combination of open metal site and π-complexation. Chem. Commun. 51, 2714 (2015).CrossRefGoogle Scholar
Li, B., Zhang, Y., Krishna, R., Yao, K., Han, Y., Wu, Z., Ma, D., Shi, Z., Pham, T., Space, B., Liu, J., Thallapally, P.K., Liu, J., Chrzanowski, M., and Ma, S.: Introduction of π-complexation into porous aromatic framework for highly selective adsorption of ethylene over ethane. J. Am. Chem. Soc. 136, 8654 (2014).CrossRefGoogle ScholarPubMed
Zhou, Z., He, C., Yang, L., Wang, Y., Liu, T., and Duan, C.: Alkyne activation by a porous silver coordination polymer for heterogeneous catalysis of carbon dioxide cycloaddition. ACS Catal. 7, 2248 (2017).CrossRefGoogle Scholar
Zhang, G., Yang, H., and Fei, H.: Unusual missing linkers in an organosulfonate-based primitive-cubic (pcu)-type metal-organic framework for CO2 capture and conversion under ambient conditions. ACS Catal. 8, 2519 (2018).CrossRefGoogle Scholar
Liu, X.H., Ma, J.G., Niu, Z., Yang, G.M., and Cheng, P.: An efficient nanoscale heterogeneous catalyst for the capture and conversion of carbon dioxide at ambient pressure. Angew. Chem. Int. Ed. 54, 988 (2015).CrossRefGoogle ScholarPubMed
Molla, R.A., Ghosh, K., Banerjee, B., Iqubal, M.A., Kundu, S.K., Islam, S.M., and Bhaumik, A.: Silver nanoparticles embedded over porous metal organic frameworks for carbon dioxide fixation via carboxylation of terminal alkynes at ambient pressure. J. Colloid Interface Sci. 477, 220 (2016).CrossRefGoogle ScholarPubMed
Gao, W.Y., Wu, H., Leng, K., Sun, Y., and Ma, S.: Inserting CO2 into Aryl C-H bonds of metal-organic frameworks: CO2 Utilization for direct heterogeneous C-H activation. Angew. Chem. Int. Ed. 55, 5472 (2016).CrossRefGoogle ScholarPubMed
McDonald, T.M., Mason, J.A., Kong, X., Bloch, E.D., Gygi, D., Dani, A., Crocellà, V., Giordanino, F., Odoh, S.O., Drisdell, W.S., Vlaisavljevich, B., Dzubak, A.L., Poloni, R., Schnell, S.K., Planas, N., Lee, K., Pascal, T., Wan, L.F., Prendergast, D., Neaton, J. B., Smit, B., Kortright, , Gagliardi, L.Bordiga, S.Reimer, J. A., Long, J. R.: Cooperative insertion of CO2 in diamine-appended metal-organic frameworks. Nature 519, 303 (2015).CrossRefGoogle ScholarPubMed
Zhao, D., Liu, X.-H., Zhu, C., Kang, Y.-S., Wang, P., Shi, Z., Lu, Y., and Sun, W.-Y.: Efficient and reusable metal-organic framework catalysts for carboxylative cyclization of propargylamines with carbon dioxide. ChemCatChem 9, 4598 (2017).CrossRefGoogle Scholar
Li, W., Wang, H., Jiang, X., Zhu, J., Liu, Z., Guo, X., and Song, C.: A short review of recent advances in CO2 hydrogenation to hydrocarbons over heterogeneous catalysts. RSC Adv. 8, 7651 (2018).CrossRefGoogle Scholar
Younas, M., Loong Kong, L., Bashir, M.J.K., Nadeem, H., Shehzad, A., and Sethupathi, S.: Recent advancements, fundamental challenges, and opportunities in catalytic methanation of CO2. Energy Fuels 30, 8815 (2016).CrossRefGoogle Scholar
Zhen, W., Li, B., Lu, G., and Ma, J.: Enhancing catalytic activity and stability for CO2 methanation on Ni@MOF-5 via control of active species dispersion. Chem. Commun. 51, 1728 (2015).CrossRefGoogle ScholarPubMed
Li, W., Zhang, A., Jiang, X., Chen, C., Liu, Z., Song, C., and Guo, X.: Low temperature CO2 methanation: ZIF-67-derived Co-based porous carbon catalysts with controlled crystal morphology and size. ACS Sustain. Chem. Eng. 5, 7824 (2017).CrossRefGoogle Scholar
Zhan, G. and Zeng, H.C.: ZIF-67-derived nanoreactors for controlling product selectivity in CO2 hydrogenation. ACS Catal. 7, 7509 (2017).CrossRefGoogle Scholar
Lippi, R., Howard, S.C., Barron, H., Easton, C.D., Madsen, I.C., Waddington, L.J., Vogt, C., Hill, M.R., Sumby, C.J., Doonan, C.J., and Kennedy, D.F.: Highly active catalyst for CO2 methanation derived from a metal organic framework template. J. Mater. Chem. A 5, 12990 (2017).CrossRefGoogle Scholar
Zhang, T., Manna, K., and Lin, W.: Metal-organic frameworks stabilize solution-inaccessible cobalt catalysts for highly efficient broad-scope organic transformations. J. Am. Chem. Soc. 138, 3241 (2016).CrossRefGoogle ScholarPubMed
Yin, Y., Hu, B., Li, X., Zhou, X., Hong, X., and Liu, G.: Pd@zeolitic imidazolate framework-8 derived PdZn alloy catalysts for efficient hydrogenation of CO2 to methanol. Appl. Catal. B Environ. 234, 143 (2018).CrossRefGoogle Scholar
Rungtaweevoranit, B., Baek, J., Araujo, J.R., Archanjo, B.S., Choi, K.M., Yaghi, O.M., and Somorjai, G.A.: Copper nanocrystals encapsulated in Zr-based metal-organic frameworks for highly selective CO2 hydrogenation to methanol. Nano Lett. 16, 7645 (2016).CrossRefGoogle Scholar
An, B., Zhang, J., Cheng, K., Ji, P., Wang, C., and Lin, W.: Confinement of ultrasmall Cu/ZnOx nanoparticles in metal-organic frameworks for selective methanol synthesis from catalytic hydrogenation of CO2. J. Am. Chem. Soc. 139, 3834 (2017).CrossRefGoogle ScholarPubMed
An, B., Li, Z., Song, Y., Zhang, J., Zeng, L., Wang, C., and Lin, W.: Cooperative copper centres in a metal–organic framework for selective conversion of CO2 to ethanol. Nat. Catal. 2, 709 (2019).CrossRefGoogle Scholar
Liu, J., Sun, Y., Jiang, X., Zhang, A., Song, C., and Guo, X.: Pyrolyzing ZIF-8 to N-doped porous carbon facilitated by iron and potassium for CO2 hydrogenation to value-added hydrocarbons. J. CO2 Util. 25, 120 (2018).CrossRefGoogle Scholar
Liu, J., Zhang, A., Liu, M., Hu, S., Ding, F., Song, C., and Guo, X.: Fe-MOF-derived highly active catalysts for carbon dioxide hydrogenation to valuable hydrocarbons. J. CO2 Util. 21, 100 (2017).CrossRefGoogle Scholar
An, B., Cheng, K., Wang, C., Wang, Y., and Lin, W.: Pyrolysis of metal-organic frameworks to Fe3O4@Fe5C2 core-shell nanoparticles for fischer-tropsch synthesis. ACS Catal. 6, 3610 (2016).CrossRefGoogle Scholar
Meng, W., Chen, W., Zhao, L., Huan, G.Y., Zhu, M., Huang, Y., Fu, Y., Geng, F., Yu, J., Chen, X., and Zhi, C.: Porous Fe3O4/carbon composite electrode material prepared from metal-organic framework template and effect of temperature on its capacitance. Nano Energy 8, 133 (2014).CrossRefGoogle Scholar
Li, Z., Rayder, T.M., Luo, L., Byers, J.A., and Tsung, C.K.: Aperture-opening encapsulation of a transition metal catalyst in a metal-organic framework for CO2 hydrogenation. J. Am. Chem. Soc. 140, 8082 (2018).CrossRefGoogle Scholar
Xu, W., Zhang, X., Dong, M., Zhao, J., and Di, L.: Plasma-assisted Ru/Zr-MOF catalyst for hydrogenation of CO2 to methane. Plasma Sci. Technol. 21, 044004 (2019).CrossRefGoogle Scholar
Wang, C., Xie, Z., Dekrafft, K.E., and Lin, W.: Doping metal-organic frameworks for water oxidation, carbon dioxide reduction, and organic photocatalysis. J. Am. Chem. Soc. 133, 13445 (2011).CrossRefGoogle ScholarPubMed
Alvaro, M., Carbonell, E., Ferrer, B., Llabrés, I., Xamena, F.X., and Garcia, H.: Semiconductor behavior of a metal-organic framework (MOF). Chemistry 13, 5106 (2007).CrossRefGoogle Scholar
Lee, Y., Kim, S., Kang, J.K., and Cohen, S.M.: Photocatalytic CO2 reduction by a mixed metal (Zr/Ti), mixed ligand metal-organic framework under visible light irradiation. Chem. Commun. 51, 5735 (2015).CrossRefGoogle Scholar
Nasalevich, M.A., Hendon, C.H., Santaclara, J.G., Svane, K., Van Der Linden, B., Veber, S.L., Fedin, M.V., Houtepen, A.J., Van Der Veen, M.A., Kapteijn, F., Walsh, A., and Gascon, J.: Electronic origins of photocatalytic activity in d0 metal organic frameworks. Sci. Rep. 6, 23676 (2016).CrossRefGoogle ScholarPubMed
Windle, C.D., George, M.W., Perutz, R.N., Summers, P.A., Sun, X.Z., and Whitwood, A.C.: Comparison of rhenium-porphyrin dyads for CO2 photoreduction: Photocatalytic studies and charge separation dynamics studied by time-resolved IR spectroscopy. Chem. Sci. 6, 6847 (2015).CrossRefGoogle ScholarPubMed
Fu, Y., Sun, D., Chen, Y., Huang, R., Ding, Z., Fu, X., and Li, Z.: An amine-functionalized titanium metal-organic framework photocatalyst with visible-light-induced activity for CO2 reduction. Angew. Chem. Int. Ed. 51, 3364 (2012).CrossRefGoogle ScholarPubMed
Cavka, J.H., Jakobsen, S., Olsbye, U., Guillou, N., Lamberti, C., Bordiga, S., and Lillerud, K.P.: A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J. Am. Chem. Soc. 130, 13850 (2008).CrossRefGoogle ScholarPubMed
Wang, Y., Huang, N.Y., Shen, J.Q., Liao, P.Q., Chen, X.M., and Zhang, J.P.: Hydroxide ligands cooperate with catalytic centers in metal-organic frameworks for efficient photocatalytic CO2 reduction. J. Am. Chem. Soc. 140, 38 (2018).CrossRefGoogle ScholarPubMed
Kajiwara, T., Fujii, M., Tsujimoto, M., Kobayashi, K., Higuchi, M., Tanaka, K., and Kitagawa, S.: Photochemical reduction of low concentrations of CO2 in a porous coordination polymer with a ruthenium(II)-CO complex. Angew. Chem. Int. Ed. 55, 2697 (2016).CrossRefGoogle Scholar
Wang, D., Huang, R., Liu, W., Sun, D., and Li, Z.: Fe-based MOFs for photocatalytic CO2 reduction: Role of coordination unsaturated sites and dual excitation pathways. ACS Catal. 4, 4254 (2014).CrossRefGoogle Scholar
Dao, X.Y., Guo, J.H., Wei, Y.P., Guo, F., Liu, Y., and Sun, W.Y.: Solvent-free photoreduction of CO2 to CO catalyzed by Fe-MOFs with superior selectivity. Inorg. Chem. 58, 8517 (2019).CrossRefGoogle ScholarPubMed
Xu, H.Q., Hu, J., Wang, D., Li, Z., Zhang, Q., Luo, Y., Yu, S.H., and Jiang, H.L.: Visible-light photoreduction of CO2 in a metal-organic framework: Boosting electron-hole separation via electron trap states. J. Am. Chem. Soc. 137, 13440 (2015).CrossRefGoogle Scholar
Chen, D., Xing, H., Wang, C., and Su, Z.: Highly efficient visible-light-driven CO2 reduction to formate by a new anthracene-based zirconium MOF via dual catalytic routes. J. Mater. Chem. A 4, 2657 (2016).CrossRefGoogle Scholar
Wu, L.Y., Mu, Y.F., Guo, X.X., Zhang, W., Zhang, Z.M., Zhang, M., and Lu, T.B.: Encapsulating perovskite quantum dots in iron-based Metal–Organic Frameworks (MOFs) for efficient photocatalytic CO2 reduction. Angew. Chem. Int. Ed. 58, 9491 (2019).CrossRefGoogle ScholarPubMed
Zhu, W., Zhang, C., Li, Q., Xiong, L., Chen, R., Wan, X., Wang, Z., Chen, W., Deng, Z., and Peng, Y.: Selective reduction of CO2 by conductive MOF nanosheets as an efficient co-catalyst under visible light illumination. Appl. Catal. B Environ. 238, 339 (2018).CrossRefGoogle Scholar
Al-Omari, A.A., Yamani, Z.H., and Nguyen, H.L.: Electrocatalytic CO2 reduction: From homogeneous catalysts to heterogeneous-based reticular chemistry. Molecules 23, 2835 (2018).CrossRefGoogle ScholarPubMed
Huang, Z., Dong, P., Zhang, Y., Nie, X., Wang, X., and Zhang, X.: A ZIF-8 decorated TiO2 grid-like film with high CO2 adsorption for CO2 photoreduction. J. CO2 Util. 24, 369 (2018).CrossRefGoogle Scholar
Liu, Q., Low, Z.X., Li, L., Razmjou, A., Wang, K., Yao, J., and Wang, H.: ZIF-8/Zn2GeO4 nanorods with an enhanced CO2 adsorption property in an aqueous medium for photocatalytic synthesis of liquid fuel. J. Mater. Chem. A 1, 11563 (2013).CrossRefGoogle Scholar
Habisreutinger, S.N., Schmidt-Mende, L., and Stolarczyk, J.K.: Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angew. Chem. Int. Ed. 52, 7372 (2013).CrossRefGoogle ScholarPubMed
Sun, D., Liu, W., Fu, Y., Fang, Z., Sun, F., Fu, X., Zhang, Y., and Li, Z.: Noble metals can have different effects on photocatalysis over metal-organic frameworks (MOFs): A case study on M/NH2-MIL-125(Ti) (M = Pt and Au). Chem. A Eur. J. 20, 4780 (2014).CrossRefGoogle Scholar
Wang, S., Lin, J., and Wang, X.: Semiconductor-redox catalysis promoted by metal-organic frameworks for CO2 reduction. Phys. Chem. Chem. Phys. 16, 14656 (2014).CrossRefGoogle ScholarPubMed
Shi, L., Wang, T., Zhang, H., Chang, K., and Ye, J.: Electrostatic self-assembly of nanosized carbon nitride nanosheet onto a zirconium metal-organic framework for enhanced photocatalytic CO2 reduction. Adv. Funct. Mater. 25, 5360 (2015).CrossRefGoogle Scholar
Ye, L., Liu, J., Gao, Y., Gong, C., Addicoat, M., Heine, T., Wöll, C., and Sun, L.: Highly oriented MOF thin film-based electrocatalytic device for the reduction of CO2 to CO exhibiting high faradaic efficiency. J. Mater. Chem. A 4, 15320 (2016).CrossRefGoogle Scholar
Hod, I., Sampson, M.D., Deria, P., Kubiak, C.P., Farha, O.K., and Hupp, J.T.: Fe-porphyrin-based metal-organic framework films as high-surface concentration, heterogeneous catalysts for electrochemical reduction of CO2. ACS Catal. 5, 6302 (2015).CrossRefGoogle Scholar
Shao, P., Yi, L., Chen, S., Zhou, T., and Zhang, J.: Metal-organic frameworks for electrochemical reduction of carbon dioxide: The role of metal centers. J. Energy Chem. 40, 156 (2020).CrossRefGoogle Scholar
Zhang, H., Li, J., Tan, Q., Lu, L., Wang, Z., and Wu, G.: Metal–organic frameworks and their derived materials as electrocatalysts and photocatalysts for CO2 reduction: Progress, challenges, and perspectives. Chem. A Eur. J. 24, 18137 (2018).CrossRefGoogle Scholar
Lei, Z., Xue, Y., Chen, W., Qiu, W., Zhang, Y., Horike, S., and Tang, L.: MOFs-based heterogeneous catalysts: New opportunities for energy-related CO2 conversion. Adv. Energy Mater. 8, 1801587 (2018).CrossRefGoogle Scholar
Zhang, X., Wu, Z., Zhang, X., Li, L., Li, Y., Xu, H., Li, X., Yu, X., Zhang, Z., Liang, Y., and Wang, H.: Highly selective and active CO2 reduction electrocatalysts based on cobalt phthalocyanine/carbon nanotube hybrid structures. Nat. Commun. 8, 1 (2017).Google ScholarPubMed
Qiu, Y.L., Zhong, H.X., Zhang, T.T., Xu, W.B., Su, P.P., Li, X.F., and Zhang, H.M.: Selective electrochemical reduction of carbon dioxide using Cu based metal organic framework for CO2 capture. ACS Appl. Mater. Interfaces 10, 2480 (2018).CrossRefGoogle ScholarPubMed
Jiang, X., Wu, H., Chang, S., Si, R., Miao, S., Huang, W., Li, Y., Wang, G., and Bao, X.: Boosting CO2 electroreduction over layered zeolitic imidazolate frameworks decorated with Ag2O nanoparticles. J. Mater. Chem. A 5, 19371 (2017).CrossRefGoogle Scholar
Huan, T.N., Ranjbar, N., Rousse, G., Sougrati, M., Zitolo, A., Mougel, V., Jaouen, F., and Fontecave, M.: Electrochemical reduction of CO2 catalyzed by Fe-N-C materials: A structure-selectivity study. ACS Catal. 7, 1520 (2017).CrossRefGoogle Scholar
Nam, D.H., Bushuyev, O.S., Li, J., De Luna, P., Seifitokaldani, A., Dinh, C.T., García De Arquer, F.P., Wang, Y., Liang, Z., Proppe, A.H., Tan, C.S., Todorović, P., Shekhah, O., Gabardo, C.M., Jo, J.W., Choi, J., Choi, M.J., Baek, S.W., et al. : Metal-organic frameworks mediate Cu coordination for selective CO2 electroreduction. J. Am. Chem. Soc. 140, 11378 (2018).CrossRefGoogle ScholarPubMed
Kornienko, N., Zhao, Y., Kley, C.S., Zhu, C., Kim, D., Lin, S., Chang, C.J., Yaghi, O.M., and Yang, P.: Metal-organic frameworks for electrocatalytic reduction of carbon dioxide. J. Am. Chem. Soc. 137, 14129 (2015).CrossRefGoogle ScholarPubMed
Kang, X., Zhu, Q., Sun, X., Hu, J., Zhang, J., Liu, Z., and Han, B.: Highly efficient electrochemical reduction of CO2 to CH4 in an ionic liquid using a metal-organic framework cathode. Chem. Sci. 7, 266 (2016).CrossRefGoogle Scholar
Rosen, B.A., Haan, J.L., Mukherjee, P., Braunschweig, B., Zhu, W., Salehi-Khojin, A., Dlott, D.D., and Masel, R.I.: In situ spectroscopic examination of a low overpotential pathway for carbon dioxide conversion to carbon monoxide. J. Phys. Chem. C 116, 15307 (2012).CrossRefGoogle Scholar
Senthil Kumar, R., Senthil Kumar, S., and Anbu Kulandainathan, M.: Highly selective electrochemical reduction of carbon dioxide using Cu based metal organic framework as an electrocatalyst. Electrochem. Commun. 25, 70 (2012).CrossRefGoogle Scholar
Hinogami, R., Yotsuhashi, S., Deguchi, M., Zenitani, Y., Hashiba, H., and Yamada, Y.: Electrochemical reduction of carbon dioxide using a copper rubeanate metal organic framework. ECS Electrochem. Lett. 1, H17 (2012).CrossRefGoogle Scholar
Albo, J., Vallejo, D., Beobide, G., Castillo, O., Castaño, P., and Irabien, A.: Copper-based metal–organic porous materials for CO2 electrocatalytic reduction to alcohols. ChemSusChem 10, 1100 (2017).CrossRefGoogle ScholarPubMed