Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-26T15:12:55.094Z Has data issue: false hasContentIssue false

Long-range, low-cost electric vehicles enabled by robust energy storage

Published online by Cambridge University Press:  18 September 2015

Ping Liu*
Affiliation:
Advanced Research Projects Agency-Energy, United States Department of Energy, Washington, District of Columbia 20024, USA
Russel Ross
Affiliation:
Booz Allen Hamilton, Washington, District of Columbia 20024, USA
Aron Newman
Affiliation:
Booz Allen Hamilton, Washington, District of Columbia 20024, USA
*
a)Address all correspondence to Ping Liu at [email protected]
Get access

Abstract

A variety of inherently robust energy storage technologies hold the promise to increase the range and decrease the cost of electric vehicles (EVs). These technologies help diversify approaches to EV energy storage, complementing current focus on high specific energy lithium-ion batteries.

The need for emission-free transportation and a decrease in reliance on imported oil has prompted the development of EVs. To reach mass adoption, a significant reduction in cost and an increase in range are needed. Using the cost per mile of range as the metric, we analyzed the various factors that contribute to the cost and weight of EV energy storage systems. Our analysis points to two primary approaches for minimizing cost. The first approach, of developing redox couples that offer higher specific energy than state-of-the-art lithium-ion batteries, dominates current research effort, and its challenges and potentials are briefly discussed. The second approach represents a new insight into the EV research landscape. Chemistries and architectures that are inherently more robust reduce the need for system protection and enables opportunities of using energy storage systems to simultaneously serve vehicle structural functions. This approach thus enables the use of low cost, lower specific energy chemistries without increasing vehicle weight. Examples of such systems include aqueous batteries, flow cells, and all solid-state batteries. Research progress in these technical areas is briefly reviewed. Potential research directions that can enable low-cost EVs using multifunctional energy storage technologies are described.

Type
Review
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Tran, M., Banister, D., Bishop, J.D.K., and McCulloch, M.D.: Realizing the electric-vehicle revolution. Nat. Clim. Change 2, 328 (2012).CrossRefGoogle Scholar
U.S. Energy Information Administration: Annual Energy Review 2010, U.S. Energy Information Administration, Office of Energy Statistics, U.S. Department of Energy, Washington DC, (2011).Google Scholar
Elgowainy, A., Han, J., Poch, L., Wang, M., Vyas, A., Mahalik, M., and Rousseau, A.: Well-to-Wheels Analysis of Energy Use and Greenhouse Gas Emissions of Plug-in Hybrid Electric Vehicles. (2010). Available from: http://www.transportation.anl.gov/pdfs/TA/629.PDF (cited March 3, 2014).Google Scholar
Union of Concerned Scientists: State of Charge: Electric Vehicles’ Global Warming Emissions and Fuel-Cost Savings Across the United States. (2012). Available from: http://www.ucsusa.org/clean_vehicles/smart-transportation-solutions/advanced-vehicle-technologies/electric-cars/emissions-and-charging-costs-electric-cars.html (cited March 1, 2014).Google Scholar
Electric Drive Transportation Association: Electric Drive Sales Dashboard. (2014). Available from: http://www.electricdrive.org/index.php?ht=d/sp/i/20952/pid/20952 (cited March 1, 2014).Google Scholar
Bartlett, J.: Survey: Consumers Express Concerns about Electric, Plug-in Hybrid Cars. (2012). Available from: http://www.consumerreports.org/cro/news/2012/01/survey-consumers-express-concerns-about-electric-plug-in-hybrid-cars/index.htm (cited March 3, 2014).Google Scholar
Eberle, U. and von Helmolt, R.: Sustainable transportation based on electric vehicle concepts: A brief overview. Energy Environ. Sci. 3, 689 (2010).CrossRefGoogle Scholar
Krebs, M.: Will Higher Gas Prices Boost Hybrid, Ev Sales? (2012). Available from: http://www.edmunds.com/industry-center/analysis/will-higher-gas-prices-boost-hybrid-ev-sales.html (cited March 3, 2014).Google Scholar
Howell, D.: Battery Status, and Cost Reduction: Prospects in EV Everywhere Battery Workshop, Chicago, IL, 2012.Google Scholar
Tesla Motors: Gigafactory. (2014). Available from: www.teslamotors.com/sites/default/files/.../gigafactory.pdf (cited May 17, 2015).Google Scholar
USABC: Usabc Goals for Advanced Batteries for Evs. Available from: http://www.uscar.org/guest/article_view.php?articles_id=85 (cited May 16, 2015).Google Scholar
Wagner, F.T., Lakshmanan, B., and Mathias, M.F.: Electrochemistry and the future of the automobile. J. Phys. Chem. Lett. 1, 2204 (2010).CrossRefGoogle Scholar
J. Ward, : Ev Everywhere Battery Workshop: Preliminary Target-setting Framework. (2012). Available from: https://www1.eere.energy.gov/vehiclesandfuels/pdfs/ev_everywhere/4_ward_b.pdf (cited March 3, 2014).Google Scholar
Verbrugge, M.W. and Borroni-Bird, C.E.: Transportation: Fully autonomous vehicles. In Fundamentals of Materials for Energy and Environmental Sustainability, Ginley, D.S. and Cahen, D. eds.; Cambridge University Press: Cambridge, 2012.Google Scholar
RECHARGE aisbl: E-Mobility Roadmap for the Eu Battery Industry. (2013). Available from: http://www.rechargebatteries.org/wp-content/uploads/2013/04/Battery-Roadmap-RECHARGE-05-July-2013.pdf (cited May 17, 2015).Google Scholar
Liu, P., Wang, J., Hicks-Garner, J., Sherman, E., Soukiazian, S., Verbrugge, M., Tataria, H., Musser, J., and Finamore, P.: Aging mechanisms of LiFePO4 batteries deduced by electrochemical and structural analyses. J. Electrochem. Soc. 157, A499 (2010).CrossRefGoogle Scholar
Deshpande, R., Verbrugge, M., Cheng, Y-T., Wang, J., and Liu, P.: Battery cycle life prediction with coupled chemical degradation and fatigue mechanics. J. Electrochem. Soc. 159, A1730 (2012).CrossRefGoogle Scholar
Wang, J., Purewal, J., Liu, P., Hicks-Garner, J., Soukazian, S., Sherman, E., Sorenson, A., Vu, L., Tataria, H., and Verbrugge, M.W.: Degradation of lithium ion batteries employing graphite negatives and nickel–cobalt–manganese oxide plus spinel manganese oxide positives: Part 1, aging mechanisms and life estimation. J. Power Sources 269, 937 (2014).CrossRefGoogle Scholar
Pinson, M.B. and Bazant, M.Z.: Theory of SEI formation in rechargeable batteries: Capacity fade, accelerated aging and lifetime prediction. J. Electrochem. Soc. 160, A243 (2013).CrossRefGoogle Scholar
Sarasketa-Zabala, E., Aguesse, F., Villarreal, I., Rodriguez-Martinez, L.M., Lopez, C.M., and Kubiak, P.: Understanding lithium inventory loss and sudden performance fade in cylindrical cells during cycling with deep-discharge steps. J. Phys. Chem. C 119, 896 (2015).CrossRefGoogle Scholar
Narayanrao, R., Joglekar, M.M., and Inguva, S.: A phenomenological degradation model for cyclic aging of lithium ion cell materials. J. Electrochem. Soc. 160, A125 (2013).CrossRefGoogle Scholar
Liaw, B.Y., Jungst, R.G., Nagasubramanian, G., Case, H.L., and Doughty, D.H.: Modeling capacity fade in lithium-ion cells. J. Power Sources 140, 157 (2005).CrossRefGoogle Scholar
Broussely, M., Herreyre, S., Biensan, P., Kasztejna, P., Nechev, K., and Staniewicz, R.J.: Aging mechanism in Li ion cells and calendar life predictions. J. Power Sources 9798, 13 (2001).CrossRefGoogle Scholar
Gallagher, K.G., Goebel, S., Greszler, T., Mathias, M., Oelerich, W., Eroglu, D., and Srinivasan, V.: Quantifying the promise of lithium-air batteries for electric vehicles. Energy Environ. Sci. 7, 1555 (2014).CrossRefGoogle Scholar
McDowell, M.T., Lee, S.W., Nix, W.D., and Cui, Y.: 25th anniversary article: Understanding the lithiation of silicon and other alloying anodes for lithium-ion batteries. Adv. Mater. 25, 4966 (2013).CrossRefGoogle ScholarPubMed
Szczech, J.R. and Jin, S.: Nanostructured silicon for high capacity lithium battery anodes. Energy Environ. Sci. 4, 56 (2011).CrossRefGoogle Scholar
Wu, H., Chan, G., Choi, J.W., Ryu, I., Yao, Y., McDowell, M.T., Lee, S.W., Jackson, A., Yang, Y., Hu, L., and Cui, Y.: Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nat. Nanotechnol. 7, 309 (2012).CrossRefGoogle ScholarPubMed
Park, M.H., Kim, M.G., Joo, J., Kim, K., Kim, J., Ahn, S., Cui, Y., and Cho, J.: Silicon nanotube battery anodes. Nano Lett. 9, 3844 (2009).CrossRefGoogle ScholarPubMed
Xin, S., Qingliu, W., Juchuan, L., Xingcheng, X., Lott, A., Wenquan, L., Sheldon, B.W., and Ji, W.: Silicon-based nanomaterials for lithium-ion batteries: A review. Adv. Energy Mater. 4, 1300882 (23 pp.) (2014).Google Scholar
Xu, W., Wang, J., Ding, F., Chen, X., Nasybulin, E., Zhang, Y., and Zhang, J-G.: Lithium metal anodes for rechargeable batteries. Energy Environ. Sci. 7, 513 (2014).CrossRefGoogle Scholar
Monroe, C. and Newman, J.: The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces. J. Electrochem. Soc. 152, A396 (2005).CrossRefGoogle Scholar
Aurbach, D., Zaban, A., Gofer, Y., Ely, Y.E., Weissman, I., Chusid, O., and Abramson, O.: Recent studies of the lithium-liquid electrolyte interface electrochemical, morphological and spectral studies of a few important systems. J. Power Sources 54, 76 (1995).CrossRefGoogle Scholar
Aurbach, D., Weissman, I., Zaban, A., and Chusid, O.: Correlation between surface chemistry, morphology, cycling efficiency and interfacial properties of Li electrodes in solutions containing different Li salts. Electrochim. Acta 39, 51 (1994).CrossRefGoogle Scholar
Shiraishi, S., Kanamura, K., and Takehara, Z.: Surface condition changes in lithium metal deposited in nonaqueous electrolyte containing Hf by dissolution-deposition cycles. J. Electrochem. Soc. 146, 1633 (1999).CrossRefGoogle Scholar
Mogi, R., Inaba, M., Jeong, S.K., Iriyama, Y., Abe, T., and Ogumi, Z.: Effects of some organic additives on lithium deposition in propylene carbonate. J. Electrochem. Soc. 149, A1578 (2002).CrossRefGoogle Scholar
Stark, J.K., Ding, Y., and Kohl, P.A.: Dendrite-free electrodeposition and reoxidation of lithium-sodium alloy for metal-anode battery. J. Electrochem. Soc. 158, A1100 (2011).CrossRefGoogle Scholar
Ding, F., Xu, W., Graff, G.L., Zhang, J., Sushko, M.L., Chen, X.L., Shao, Y.Y., Engelhard, M.H., Nie, Z.M., Xiao, J., Liu, X.J., Sushko, P.V., Liu, J., and Zhang, J.G.: Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. J. Am. Chem. Soc. 135, 4450 (2013).CrossRefGoogle ScholarPubMed
Sadoway, D.R., Huang, B.Y., Trapa, P.E., Soo, P.P., Bannerjee, P., and Mayes, A.M.: Self-doped block copolymer electrolytes for solid-state, rechargeable lithium batteries. J. Power Sources 9798, 621 (2001).CrossRefGoogle Scholar
Bouchet, R., Maria, S., Meziane, R., Aboulaich, A., Lienafa, L., Bonnet, J.P., Phan, T.N.T., Bertin, D., Gigmes, D., Devaux, D., Denoyel, R., and Armand, M.: Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries. Nat. Mater. 12, 452 (2013).CrossRefGoogle ScholarPubMed
Bates, J.B., Dudney, N.J., Neudecker, B., Ueda, A., and Evans, C.D.: Thin-film lithium and lithium-ion batteries. Solid State Ionics 135, 33 (2000).CrossRefGoogle Scholar
Barghamadi, M., Kapoor, A., and Wen, C.: A review on Li–S batteries as a high efficiency rechargeable lithium battery. J. Electrochem. Soc. 160, A1256 (2013).CrossRefGoogle Scholar
Bresser, D., Passerini, S., and Scrosati, B.: Recent progress and remaining challenges in sulfur-based lithium secondary batteries—A review. Chem. Commun. 49, 10545 (2013).CrossRefGoogle ScholarPubMed
Yang, Y., Zheng, G., and Cui, Y.: Nanostructured sulfur cathodes. Chem. Soc. Rev. 42, 3018 (2013).CrossRefGoogle ScholarPubMed
Wang, D-W., Zeng, Q., Zhou, G., Yin, L., Li, F., Cheng, H-M., Gentle, I.R., and Lu, G.Q.M.: Carbon-sulfur composites for Li–S batteries: Status and prospects. J. Mater. Chem. A 1, 9382 (2013).CrossRefGoogle Scholar
Ji, X. and Nazar, L.F.: Advances in Li–S batteries. J. Mater. Chem. 20, 9821 (2010).CrossRefGoogle Scholar
Ji, X., Lee, K.T., and Nazar, L.F.: A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nat. Mater. 8, 500 (2009).CrossRefGoogle ScholarPubMed
Wan, W., Pu, W., and Ai, D.: Research progress in lithium sulfur battery. Prog. Chem. 25, 1830 (2013).Google Scholar
Yin, Y-X., Xin, S., Guo, Y-G., and Wan, L-J.: Lithium–sulfur batteries: Electrochemistry, materials, and prospects. Angew. Chem., Int. Ed. 52, 13186 (2013).CrossRefGoogle ScholarPubMed
Zhang, S.S.: Liquid electrolyte lithium/sulfur battery: Fundamental chemistry, problems, and solutions. J. Power Sources 231, 153 (2013).CrossRefGoogle Scholar
Pope, M.A. and Aksay, I.A.: Structural design of cathodes for Li–S batteries. Adv. Energy Mater. 5 (2015). doi: 10.1002/aenm.201500124.CrossRefGoogle Scholar
Balaish, M., Kraytsberg, A., and Ein-Eli, Y.: A critical review on lithium–air battery electrolytes. Phys. Chem. Chem. Phys. 16, 2801 (2014).CrossRefGoogle ScholarPubMed
Rahman, M.A., Wang, X., and Wen, C.: A review of high energy density lithium–air battery technology. J. Appl. Electrochem. 44, 5 (2014).CrossRefGoogle Scholar
Garcia-Araez, N. and Novak, P.: Critical aspects in the development of lithium–air batteries. J. Solid State Electrochem. 17, 1793 (2013).CrossRefGoogle Scholar
Rahman, M.A., Wang, X., and Wen, C.: High energy density metal–air batteries: A review. J. Electrochem. Soc. 160, A1759 (2013).CrossRefGoogle Scholar
Shao, Y., Ding, F., Xiao, J., Zhang, J., Xu, W., Park, S., Zhang, J.-G., Wang, Y., and Liu, J.: Making Li–air batteries rechargeable: Material challenges. Adv. Funct. Mater. 23, 987 (2013).CrossRefGoogle Scholar
Christensen, J., Albertus, P., Sanchez-Carrera, R.S., Lohmann, T., Kozinsky, B., Liedtke, R., Ahmed, J., and Kojic, A.: A critical review of Li/Air batteries. J. Electrochem. Soc. 159, R1 (2012).CrossRefGoogle Scholar
Van Noorden, R.: The rechargeable revolution: A better battery. Nature 507, 3 (2014).CrossRefGoogle ScholarPubMed
Orikasa, Y., Masese, T., Koyama, Y., Mori, T., Hattori, M., Yamamoto, K., Okado, T., Huang, Z-D., Minato, T., Tassel, C., Kim, J., Kobayashi, Y., Abe, T., Kageyama, H., and Uchimoto, Y.: High energy density rechargeable magnesium battery using earth-abundant and non-toxic elements. Sci. Rep. 4, 5622 (2014).CrossRefGoogle ScholarPubMed
Lin, M-C., Gong, M., Lu, B., Wu, Y., Wang, D-Y., Guan, M., Angell, M., Chen, C., Yang, J., Hwang, B-J., and Dai, H.: An ultrafast rechargeable aluminium-ion battery. Nature 520, 324 (2015).CrossRefGoogle ScholarPubMed
Harmon, J., Gopalakrishnan, P., and Mikolajczak, C.: Us Faa-Style Flammability Assessment of Lithium-ion Batteries Packed with and Contained in Equipments (Un3481). Exponent (2010). Available from: http://www.prba.org/wp-content/uploads/Exponent_Report_on_Laptop_Fire_Testing-WRFMAIN-13116235-v11.pdf (cited March 3, 2014).Google Scholar
Gabrielli, D.: Summary of safety related vehicle design issues. In 3rd Annual Electric Vehicle Safety Standards Summit, Detroit, MI, 2012.Google Scholar
Smith, B.: Chevy Volt Battery Incident Overview Report. (2012). Available from: http://www-odi.nhtsa.dot.gov/acms/cs/jaxrs/download/doc/UCM399393/INRP-PE11037-49880.pdf (cited March 3, 2014).Google Scholar
ARPA-E: Advanced Management and Protection of Energy Storage Devices. (2014). Available from: http://arpa-e.energy.gov/?q=arpa-e-site-page/view-programs (cited March 3, 2014).Google Scholar
Nagasubramanian, G. and Fenton, K.: Reducing Li-ion safety hazards through use of non-flammable solvents and recent work at Sandia national laboratories. Electrochim. Acta 101, 3 (2013).CrossRefGoogle Scholar
Roth, E.P., Doughty, D.H., and Pile, D.L.: Effects of separator breakdown on abuse response of 18650 Li-ion cells. J. Power Sources 174, 579 (2007).CrossRefGoogle Scholar
Kim, H.C. and Wallington, T.J.: Life-cycle energy and greenhouse gas emission benefits of lightweighting in automobiles: Review and harmonization. Environ. Sci. Technol. 47, 6089 (2013).CrossRefGoogle ScholarPubMed
Liu, J., Zhang, J-G., Yang, Z., Lemmon, J.P., Imhoff, C., Graff, G.L., Li, L., Hu, J., Wang, C., Xiao, J., Xia, G., Viswanathan, V.V., Baskaran, S., Sprenkle, V., Li, X., Shao, Y., and Schwenzer, B.: Materials science and materials chemistry for large scale electrochemical energy storage: From transportation to electrical grid. Adv. Funct. Mater. 23, 929 (2013).CrossRefGoogle Scholar
Wang, W., Luo, Q., Li, B., Wei, X., Li, L., and Yang, Z.: Recent progress in redox flow battery research and development. Adv. Funct. Mater. 23, 970 (2013).CrossRefGoogle Scholar
Zhou, Z., Benbouzid, M., Charpentier, J.F., Scuiller, F., and Tang, T.: A review of energy storage technologies for marine current energy systems. Renewable Sustainable Energy Rev. 18, 390 (2013).CrossRefGoogle Scholar
Leung, P., Li, X., de Leon, C.P., Berlouis, L., Low, C.T.J., and Walsh, F.C.: Progress in redox flow batteries, remaining challenges and their applications in energy storage. Rsc Adv. 2, 10125 (2012).CrossRefGoogle Scholar
Duduta, M., Ho, B., Wood, V.C., Limthongkul, P., Brunini, V.E., Carter, W.C., and Chiang, Y-M.: Semi-solid lithium rechargeable flow battery. Adv. Energy Mater. 1, 511 (2011).CrossRefGoogle Scholar
Dunn, B., Kamath, H., and Tarascon, J-M.: Electrical energy storage for the grid: A battery of choices. Science 334, 928 (2011).CrossRefGoogle ScholarPubMed
Parker, J.F., Chervin, C.N., Nelson, E.S., Rolison, D.R., and Long, J.W.: Wiring zinc in three dimensions Re-writes battery performance-dendrite-free cycling. Energy Environ. Sci. 7, 1117 (2014).CrossRefGoogle Scholar
Beck, F. and Ruetschi, P.: Rechargeable batteries with aqueous electrolytes. Electrochim. Acta 45, 2467 (2000).CrossRefGoogle Scholar
Brost, R.D.: Performance of valve-regulated lead acid batteries in Ev1 extended series strings. In The Thirteenth Annual Battery Conference on Applications and Advances, California State University, Long Beach, California, 1998.Google Scholar
Beverskog, B. and Puigdomenech, I.: Revised pourbaix diagrams for nickel at 25–300 degrees C. Corros. Sci. 39, 969 (1997).CrossRefGoogle Scholar
Cheng, F.Y., Liang, J., Tao, Z.L., and Chen, J.: Functional materials for rechargeable batteries. Adv. Mater. 23, 1695 (2011).CrossRefGoogle ScholarPubMed
Gu, S., Gong, K., Yan, E.Z., and Yan, Y.: A multiple ion-exchange membrane design for redox flow batteries. Energy Environ. Sci. 7, 29862998 (2014).CrossRefGoogle Scholar
Ruetschi, P.: Aging mechanisms and service life of lead–acid batteries. J. Power Sources 127, 33 (2004).CrossRefGoogle Scholar
Luo, J.Y., Cui, W.J., He, P., and Xia, Y.Y.: Raising the cycling stability of aqueous lithium-ion batteries by eliminating oxygen in the electrolyte. Nat. Chem. 2, 760 (2010).CrossRefGoogle ScholarPubMed
Trevey, J.E., Gross, A.F., Wang, J., Liu, P., and Vajo, J.J.: Stable cycling and excess capacity of a nanostructured Sn electrode based on Sn(CH3COO)2 confined within a nanoporous carbon scaffold. Nanotechnology 24, 6 (2013).CrossRefGoogle ScholarPubMed
Cabana, J., Monconduit, L., Larcher, D., and Palacin, M.R.: Beyond intercalation-based Li-ion batteries: The state of the art and challenges of electrode materials reacting through conversion reactions. Adv. Mater. 22, E170 (2010).CrossRefGoogle ScholarPubMed
Li, H., Wang, Z., Chen, L., and Huang, X.: Research on advanced materials for Li-ion batteries. Adv. Mater. 21, 4593 (2009).CrossRefGoogle Scholar
Chen, Z.H., Qin, Y., and Amine, K.: Redox shuttles for safer lithium-ion batteries. Electrochim. Acta 54, 5605 (2009).CrossRefGoogle Scholar
Quartarone, E. and Mustarelli, P.: Electrolytes for solid-state lithium rechargeable batteries: Recent advances and perspectives. Chem. Soc. Rev. 40, 2525 (2011).CrossRefGoogle ScholarPubMed
Takada, K.: Progress and prospective of solid-state lithium batteries. Acta Mater. 61, 759 (2013).CrossRefGoogle Scholar
Trevey, J.E., Gilsdorf, J.R., Stoldt, C.R., Lee, S.-H., and Liu, P.: Electrochemical Investigation of all-solid-state lithium batteries with a high capacity sulfur-based electrode. J. Electrochem. Soc. 159, A1019 (2012).CrossRefGoogle Scholar
Yersak, T.A., Macpherson, H.A., Kim, S.C., Le, V-D., Kang, C.S., Son, S-B., Kim, Y-H., Trevey, J.E., Oh, K.H., Stoldt, C., and Lee, S-H.: Solid state enabled reversible four electron storage. Adv. Energy Mater. 3, 120 (2013).CrossRefGoogle Scholar
Bates, J.B., Dudney, N.J., Lubben, D.C., Gruzalski, G.R., Kwak, B.S., Yu, X.H., and Zuhr, R.A.: Thin-film rechargeable lithium batteries. J. Power Sources 54, 58 (1995).CrossRefGoogle Scholar
Xu, K.: Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 104, 4303 (2004).CrossRefGoogle ScholarPubMed
Takada, K., Aotani, N., and Kondo, S.: Electrochemical behaviors of Li+ ion conductor, Li3po4–Li2s–Sis2 . J. Power Sources 43, 135 (1993).CrossRefGoogle Scholar
Hayashi, A., Minami, K., Mizuno, F., and Tatsumisago, M.: Formation of Li+ superionic crystals from the Li2S–P2S5 melt-quenched glasses. J. Mater. Sci. 43, 1885 (2008).CrossRefGoogle Scholar
Mizuno, F., Hayashi, A., Tadanaga, K., and Tatsumisago, M.: New, highly ion-conductive crystals precipitated from Li2S–P2S5 glasses. Adv. Mater. 17, 918 (2005).CrossRefGoogle Scholar
Inaguma, Y., Chen, L.Q., Itoh, M., Nakamura, T., Uchida, T., Ikuta, H., and Wakihara, M.: High ionic-conductivity in lithium lanthanum titanate. Solid State Commun. 86, 689 (1993).CrossRefGoogle Scholar
Kamaya, N., Homma, K., Yamakawa, Y., Hirayama, M., Kanno, R., Yonemura, M., Kamiyama, T., Kato, Y., Hama, S., Kawamoto, K., and Mitsui, A.: A lithium superionic conductor. Nat. Mater. 10, 682 (2011).CrossRefGoogle ScholarPubMed
Trevey, J.E., Stoldt, C.R., and Lee, S.H.: High power nanocomposite Tis2 cathodes for all-solid-state lithium batteries. J. Electrochem. Soc. 158, A1282 (2011).CrossRefGoogle Scholar
Koyama, Y., Chin, T.E., Rhyner, U., Holman, R.K., Hall, S.R., and Chiang, Y.M.: Harnessing the actuation potential of solid-state intercalation compounds. Adv. Funct. Mater. 16, 492 (2006).CrossRefGoogle Scholar
Li, W.Y., Zheng, G.Y., Yang, Y., Seh, Z.W., Liu, N., and Cui, Y.: High-performance hollow sulfur nanostructured battery cathode through a scalable, room temperature, one-step, bottom-up approach. Proc. Natl. Acad. Sci. U. S. A. 110, 7148 (2013).CrossRefGoogle ScholarPubMed
Christodoulou, L. and Venables, J.D.: Multifunctional material systems: The first generation. JOM 55, 39 (2003).CrossRefGoogle Scholar
Snyder, J.F., Wetzel, E.D., and Watson, C.M.: Improving multifunctional behavior in structural electrolytes through copolymerization of structure- and conductivity-promoting monomers. Polymer 50, 4906 (2009).CrossRefGoogle Scholar
Asp, L.E.: Multifunctional composite materials for energy storage in structural load paths. Plast., Rubber Compos. 42, 144 (2013).CrossRefGoogle Scholar
Leijonmarck, S., Carlson, T., Lindbergh, G., Asp, L.E., Maples, H., and Bismarck, A.: Solid polymer electrolyte-coated carbon fibres for structural and novel micro batteries. Compos. Sci. Technol. 89, 149 (2013).CrossRefGoogle Scholar
Ekstedt, S., Wysocki, M., and Asp, L.E.: Structural batteries made from fibre reinforced composites. Plast., Rubber Compos. 39, 148 (2010).CrossRefGoogle Scholar
Liu, P., Sherman, E., and Jacobsen, A.: Design and fabrication of multifunctional structural batteries. J. Power Sources 189, 646 (2009).CrossRefGoogle Scholar
MacKenzie, A.: Volvo to Replace Body Parts with Energized Carbon Fiber Panels. (2013). Available from: http://www.gizmag.com/volvo-battery-infused-structural-components/29437/ (cited March 28, 2014).Google Scholar
Sahraei, E. and Wierzbicki, T.: Modeling of cylindrical and pouch cells for crash energy absorption and electric short circuit. In ARPA-E Crash Safe Energy Storage Systems for Electric Vehicles Workshop, Golden, CO, 2012.Google Scholar
Chen, X., Surani, F.B., Kong, X., Punyamurtula, V.K., and Qiao, Y.: Energy absorption performance of steel tubes enhanced by a nanoporous material functionalized liquid. Appl. Phys. Lett. 89, (2006).CrossRefGoogle Scholar
Ginsberg, S.: Crash deformable battery concept for electric vehicles. In Aachen Body Engineering Days 2011, Aachen, Germany, 2011.Google Scholar