Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-26T15:03:25.078Z Has data issue: false hasContentIssue false

Laser processing of materials for renewable energy applications

Published online by Cambridge University Press:  27 April 2015

Mool C. Gupta*
Affiliation:
Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, Virginia 22904, USA
David E. Carlson
Affiliation:
Carlson PV, Williamsburg, Virginia 23185, USA
*
*Address all correspondence to Mool C. Gupta at [email protected]
Get access

Abstract

The significant advances in high-power lasers with the attainment of tens of kilowatts of optical power, high repetition rates (>MHz), reduction in size, lower cost per photon (<1$/watt), and high optical power conversion efficiency (>30%) are driving the use of lasers for material processing for renewable energy materials.

The significant advances in high-power lasers with the attainment of tens of kilowatts of optical power, high repetition rates (>MHz), reduction in size, lower cost per photon (<1$/watt), and high optical power conversion efficiency (>30%) are driving the use of lasers for material processing with very high throughput. The use of renewable energy is also increasing as an alternative power source. This review examines the various aspects of laser processing for renewable energy materials and provides an overview of fundamentals of laser material interactions, advances in high-power lasers, and specific examples of laser processing of materials for photovoltaics, solar thermal energy, thermophotovoltaics, thermoelectrics, and thin films. High-power lasers have been adapted for solar cell manufacturing applications, and new processes such as laser doping, laser transfer of metal contacts, laser annealing, etc. are being advanced further for industrial applications. The future of laser processing for renewable energy materials looks very bright with further advances expected in high-power lasers, beam delivery systems, and decreasing cost with very high reliability. Lasers can provide noncontact localized energy deposition with the potential for all low-temperature processing of materials and a very low thermal budget.

Type
Review
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Kannatey-Asibu, E.: Principles of Laser Materials Processing (Wiley, New York, 2009).Google Scholar
Born, M. and Wolf, E.: Principles of Optics, 7th ed. (Cambridge University Press, New York, 1999).Google Scholar
Jauregui, C., Limpert, J., and Tunnermann, A.: High-power fibre lasers. Nat. Photonics 7, 861867 (2013).CrossRefGoogle Scholar
Bogue, R.: The role of lasers in solar cell manufacture. Assemb. Autom. 31(1), 611 (2011).Google Scholar
Dunsky, C. and Colville, F.: Solid state laser applications in photovoltaics manufacturing. Proc. SPIE-Int. Soc. Opt. Eng. 6871, 687129-1687129-10 (2008).Google Scholar
Carlson, D.E.: Laser processing of solar cells. Proc. SPIE-Int. Soc. Opt. Eng. 8473, 847302 (9 pp.) (2012).Google Scholar
Haupt, O., Schutz, V., and Stute, U.: Multi-spot laser processing of crystalline solar cells. Proc. SPIE-Int. Soc. Opt. Eng. 7921, 79210V (9 pp.) (2011).Google Scholar
Rekow, M., Panarello, T., Falletto, N., and Guevremont, M.: Understanding and enabling laser processing of solar materials through temporal pulse control. Proc. SPIE-Int. Soc. Opt. Eng. 7202, 72020S (11 pp.) (2009).Google Scholar
Ametowabla, M., Esturo-Breton, A., Kohler, J.R., and Werner, J.H.: Laser processing of crystalline silicon solar cells. In Proceedings of the Thirty-First IEEE Photovoltaic Specialist Conference, IEEE Cat. No. 05CH37608; Lake Buena Vista, FL, 2005; pp. 12771280.Google Scholar
Engelhart, P.: Laser processing for high efficiency silicon solar cells. Proc. SPIE-Int. Soc. Opt. Eng. 7202, 72020S (11 pp.) (2009).Google Scholar
Dunsky, C.M.: The promise of solar energy: Applications and opportunities for laser processing in the manufacturing of solar cells. Proc. SPIE-Int. Soc. Opt. Eng. 6459, 64590M-164590M-12 (2007).Google Scholar
Patel, R., Bovatsek, J., and Edwards, T.: High-power solid-staet lasers: Lasers speed solar cell production. Laser Focus World 47(7), 5 (2011).Google Scholar
Booth, H.: Laser processing in industrial solar module manufacturing. J. Laser Micro/Nanoeng. 5(3), (2010).Google Scholar
Hauser, A., Hahn, G., Spiegel, M., Feist, H., Breitenstein, O., Rakotoniaina, J.P., Fath, P., and Bucher, E.: Comparison of different techniques for edge isolation. In Proceedings of the 17th European Photovoltaic Solar Energy Conference; Munich, Germany, 2001; pp. 17391741.Google Scholar
Dunsky, C.: Laser processes in PV manufacturing: An update, http://www.industrial-lasers.com (accessed 07/01/2011).Google Scholar
Hofmann, M., Schmidt, C., Kohn, N., Rentsch, J., Glunz, S.W., and Preu, R.: Stack system of PECVD amorphous silicon and PECVD silicon oxide for silicon solar cell rear side passivation. Prog. Photovoltaics Res. Appl. 16, 509518 (2008).CrossRefGoogle Scholar
Fairfield, J. and Schwuttke, G.H.: Silicon diodes made by laser irradiation. Solid-State Electron. 11, 11751176 (1968).CrossRefGoogle Scholar
Ventura, L., Schunck, J.P., Muller, J.C., Barthe, S., Vetrella, U.B., Pirozzi, L., and Salza, E.: Influence of baking conditions of doped spin-on glass sources on the formation of laser assisted selective emitters. In Proceedings of the 25th IEEE Photovoltaic Specialists Conference; Washington, DC, 1996; pp. 577580.Google Scholar
Schneiderlochner, E., Preu, P., Ludemann, R., and Glunz, S.W.: Laser-fired rear contact for crystalline silicon solar cells. Prog. Photovoltaics Res. Appl. 10, 2934 (2002).Google Scholar
Hofmann, M., Saint-Cast, P., Suwito, D., Seiffe, J., Schmidt, C., Kambor, S., Gautero, L., Kohn, N., Nekarda, J.F., Leimenstoll, A., Wagenmann, D., Erath, D., Catoir, J., Wolke, W., Janz, S., Biro, D., Grohe, A., Rentsch, J., Glunz, S.W., and Preu, R.: Overview on crystalline silicon solar cells using PECVD rear passivation and laser-fired contacts. In Proceedings of the 24th European Photovoltaic Solar Energy Conference; Hamburg, Germany, 2009; pp. 2125.Google Scholar
Hofmann, M., Kambor, S., Schmidt, C., Grambole, D., Rentsch, J., Glunz, S., and Preu, R.: Firing stable surface passivation using all-PECVD stacks of SiOx:H and SiNx:H. In Proceedings of the 22nd European Photovoltaic Solar Energy Conference; Milan, Italy, 2007; pp. 10301033.Google Scholar
Saint-Cast, P., Kania, D., Billot, E., Weiss, L., Hofmann, M., Gautero, L., Kohn, N., Biro, D., Rentsch, J., and Preu, R.: P-type Cz-Si PERC-type solar cells applying PECVD aluminum oxide rear surface passivation. In Proceedings of the 25th European Photovoltaic Solar Energy Conference; Valencia, Spain, 2010; pp. 14881491.Google Scholar
Nekarda, J., Reinwand, D., Hartmann, P., and Preu, R.: Industrial inline PVD metallization for silicon solar cells with laser fired contacts leading to 21.8% efficiency. In Proceedings of the 2nd Workshop on Metallization; Constance, Germany, 2010; pp. 5258.Google Scholar
Nekarda, J.F., Hörteis, M., Lottspeich, F., Wolf, A., and Preu, R.: Comparison of three different metallization concepts for LFC cells. In Proceedings of the 25th European Photovoltaic Solar Energy Conference; Valencia, Spain, 2010; pp. 22452249.Google Scholar
Panek, P., Drabczyk, K., and Kulesza, G., Zięba, P.: The silicon solar cells with laser fired back contacts obtained by use of Nd:YAG and ytterbium fiber lasers. In Proceedings of the 26th European Photovoltaic Solar Energy Conference; Hamburg, Germany, 2011; pp. 17501752.Google Scholar
Fischer, A.: Laser fired aluminum emitter for high efficiency silicon photovoltaics using hydrogenated amorphous silicon and silicon oxide dielectric passivation. Masters of Applied Science Thesis, University of Toronto, 2010.Google Scholar
Raghavan, A., Blecher, J.J., Palmer, T.A., Reutzel, E.W., and DebRoy, T.: Modeling of contact geometry and dopant profile during laser-silicon interaction. Proc. SPIE 8473, 115 (2012).Google Scholar
Glunz, S.W., Schneiderlöchner, E., Kray, D., Grohe, A., Hermle, M., Kampwerth, H., Preu, R., and Willeke, G.P.: Laser fired contact silicon solar cells on p- and n-substrates. In Proceedings of the 19th European Photovoltaic Solar Energy Conference; Paris, France, 2004; pp. 408412.Google Scholar
Granek, F., Hermle, M., Fleischhauer, B., Grohe, A., Schultz, O., Glunz, S.W., and Willeke, G.: Optimisation of laser-fired aluminium emitters for high efficiency n-type Si solar cells. In Proceedings of the 21st European Photovoltaic Solar Energy Conference; Dresden, Germany, 2006; pp. 777780.Google Scholar
Takahashi, T., Matsumoto, K., Murakami, K., and Hayashi, Y.: Formation of ohmic contacts on silicon, using a scanning pulsed laser (application to SnO2/n-Si solar cells). Bull. Electrotech. Lab. 49(11), 862875 (1985).Google Scholar
Song, K., Balaji, N., Kim, B., Choi, J., Ryu, K., Park, C., Ju, M., Lee, Y., Lee, Y-J., Lee, H., Lee, T., and Yi, J.: Investigation of antimony diffusion for a local back surface field with laser-fired contacts in crystalline silicon solar cells. Scr. Mater. 68(5), 325328 (2013).Google Scholar
He, J., Hegedus, S., Das, U., Shu, Z., Bennett, M., Zhang, L., and Birkmire, R.: Laser fired contact for n-type crystalline Si solar cells. Prog. Photovoltaics Res. Appl. published online 17 June 2014. Doi: 10.1002/pip.2520.CrossRefGoogle Scholar
Sidhu, R., Bennett, M., Hmung, G., Ren, W., Zou, L., Carlson, D., Dong, J., Li, X., Lu, J., Song, W., Tao, L., Xia, Z., Yang, Z., and Xing, G.: Interdigitated back contact silicon solar cells with laser fired contacts. In Proceedings of the 39th IEEE Photovoltaic Specialists Conference; Tampa, FL, 2013; pp. 12981300.Google Scholar
Kloter, B., Buss, D., Hussack, A., Kowalzik, P., Peters, S., Schutze, M., Stegemann, E., and Muller, J.: Current status of high-efficiency Q.ANTUM technology at Hanwha Q CELLS. In Proceedings of the 39th IEEE Photovoltaic Specialists Conference; Tampa, FL, 2013; pp. 12461248.Google Scholar
Wang, L., Carlson, D., and Gupta, M.: Silicon solar cells based on all-laser-transferred contacts. Prog. Photovoltaics Res. Appl. 23, 6168 (2015).CrossRefGoogle Scholar
Hoffmann, E., Röder, T.C., and Köhler, J.R.: Self-doping laser transferred contacts for c-Si solar cells. In Proceedings of the 38th IEEE Photovoltaic Specialists Conference; Austin, TX, 2012; pp. 10591062.Google Scholar
Hermann, S., Engelhart, P., Merkle, A., Neubert, T., Brendemühl, T., Meyer, R., Harder, N-P., and Brendel, R.: 21.4 %-efficient emitter wrap-through rise solar cell on large area and picosecond laser processing of local contact openings. In Proceedings of the 22nd European Photovoltaic Solar Energy Conference; Milan, Italy, 2007; pp. 970975.Google Scholar
Das, J., Tous, L., Hernández, J.L., Jaffrennou, P., Ngamo, M., John, J., Posthuma, N.E., Baert, K., and Poortmans, J.: Laser ablation: Towards advanced industrial solar cell metallization processes. In Proceedings of the 26th European Photovoltaic Solar Energy Conference; Hamburg, Germany, 2011; pp. 16911693.Google Scholar
Correia, S.A.G.D., Lossen, J., Wald, M., Neckermann, K., and Bähr, M.: Selective laser ablation of dielectric layers. In Proceedings of the 22nd European Photovoltaic Solar Energy Conference; Milan, Italy, 2007; pp. 10611067.Google Scholar
Hernández, J.L., Tous, L., Allebé, C., Philipsen, H., Schlenker, E., John, J., Baert, K., and Poortmans, J.: Application of CMOS metal barriers to copper plated silicon solar cells. In Proceedings of the 25th European Photovoltaic Solar Energy Conference; Valencia, Spain, 2010; pp. 14791483.Google Scholar
Lee, K., Lim, J-K., Kim, S-K., Moon, I-S., Seo, J-W., Lee, W-J., and Cho, E-C.: Impact of laser hole drilling on the breakage rate of multicrystalline silicon wafers. In Proceedings of the 37th IEEE Photovoltaic Specialists Conference; Seattle, WA, 2011; pp. 14731476.Google Scholar
Mingirulli, N., Grohe, A., Dohrn, A., Hofmann, M., Schubert, M., Roth, T., Biro, D., and Preu, R.: Lifetime studies on laser drilled vias for application in emitter-wrap-through solar cells. In Proceedings of the 22nd European Photovoltaic Solar Energy Conference; Milan, Italy, 2007; pp. 14151418.Google Scholar
Lamers, M.W.P.E., Tjengdrawira, C., Koppes, M., Bennett, I.J., Bende, E.E., Visser, T.P., Kossen, E., Brockholz, B., Mewe, A.A., Romijn, I.G., Sauar, E., Carnel, L., Julsrud, S., Naas, T., de Jong, P.C., and Weeber, A.W.: 17.9% back-contacted mc-Si cells resulting in module efficiency of 17.0%. In Proceedings of the 25th European Photovoltaic Solar Energy Conference; Valencia, Spain, 2010; pp. 14171421.Google Scholar
Drews, A., Clement, F., Spribille, A., Thaidigsmann, B., Linse, M., Gutscher, S., Werner, S., Reitenbach, V., Ould Chighali, E., Wolf, A., Zimmer, M., Nekarda, J., Haedrich, I., Tranitz, M., Eitner, U., Wirth, H., Wilson, H.R., Biro, D., and Preu, R.: HIP-MWT solar cells – pilot-line cell processing and module integration. In Proceedings of the 27th European Photovoltaic Solar Energy Conference; Frankfurt, Germany, 2012; pp. 828831.Google Scholar
Wanka, S., Rychtarik, D., Muller, J., Geissler, S., Kappe, P., Spallek, M., Vom Bauer, U., Ludwig, C., and Wawer, P.: Tra.Q – Laser marking for single wafer identification – Production experience from 100 million wafers. In Proceedings of the 37th IEEE photovoltaic Specialist Conference; Seattle, WA, 2011; pp. 11011104.Google Scholar
Wenham, S.R. and Green, M.A.: Buried contact solar cell. Australian Patent No. 570309, March 26, 1985.Google Scholar
Hanoka, J.I.: Continuous, Automated Manufacturing of String Ribbon Si PV Modules; NREL Final Report, 21 May 1998 – 20 May 2001, NREL/SR-520-30622, National Renewable Energy Laboratory: Golden, CO; 2001.Google Scholar
Bruton, T.M., Heasman, K.C., Nagle, J.P., Cunningham, D.W., Mason, N. B., Russell, R., and Balbuena, M.A.: Large area high efficiency silicon solar cells made by the laser grooved buried grid process. In Proceedings of the 12th European Photovoltaic Solar Energy Conference; Amsterdam, Netherlands, 1994; pp. 761762.Google Scholar
Bruton, T., Mason, N., Roberts, S., Hartley, O.N., Gledhill, S., Fernandez, J., Russell, R., Warta, W., Glunz, S., Schultz, O., Hermle, M., and Willeke, G.: Toward 20% efficient silicon solar cells manufactured at 60 MWp per annum. In Proceedings of the 3rd World Conference on Photovoltaic Energy Conversion; Osaka, Japan, 2003; pp. 899902.Google Scholar
Nayak, B.K., Iyengar, V.V., and Gupta, M.C.: Efficient light trapping in silicon solar cells by ultrafast-laser-induced self-assembled micro/nano structures. Prog. Photovoltaics Res. Appl. 19, 631639 (2011). Doi: 10.1002/pip.1067.Google Scholar
Nayak, B.K., Iyengar, V.V., and Gupta, M.C.: Ultrafast laser textured silicon solar cells. MRS Proc. 1123, 1123-P07-09 (2008).Google Scholar
Alemán, M., Streek, A., Regenfuss, P., Glunz, S.W., and Willeke, G.: Laser micro-sintering as a new metallization technique for silicon solar cells. In Proceedings of the 21st European Photovoltaic Solar Energy Conference; Dresden, Germany, 2006; pp. 705708.Google Scholar
Abbott, M.D., Trupke, T., Hartmann, H.P., Gupta, R., and Breitenstein, O.: Laser isolation of shunted regions in industrial solar cells. progress in Photovoltaics: Research and applications 15(7), 613620 (2007).CrossRefGoogle Scholar
Andrä, G., Bergmann, J., and Falk, F.: Laser crystallized multicrystalline silicon thin films on glass. Thin Solid Films 487, 7780 (2005).Google Scholar
Nayak, B.K., Eaton, B., Selvan, J.A.A., McLeskey, J., Gupta, M.C., Romero, R., and Ganguly, G.: Semiconductor laser crystallization of a-Si:H on conducting tin-oxide-coated glass for solar cell and display applications. Appl. Phys. A: Mater. Sci. Process. 80(5), 10771080 (2005).CrossRefGoogle Scholar
Andrä, G., Bochmann, A., Falk, F., Gawlik, A., Ose, E., and Plentz, J.: Diode laser crystallized multicrystalline silicon thin film solar cells on glass. In Proceedings of the 21st European Photovoltaic Solar Energy Conference; Dresden, Germany, 2006; pp. 972975.Google Scholar
Andrä, G., Höger, I., Bergmann, J., Gawlik, A., Plentz, J., Ose, E., Falk, F., Burghardt, B., and Schippel, S.: Laser crystallized silicon layers for multicrystalline thin-film solar cells. In Proceedings of the 24th European Photovoltaic Solar Energy Conference; Hamburg, Germany, 2009; pp. 25212524.Google Scholar
Schoonderbeek, A., Schutz, V., Haupt, O., and Stute, U.: Laser processing of thin films for photovoltaic applications. J. Laser Micro/Nanoeng. 5(3), 248255 (2010).Google Scholar
Bartlome, R., Strahm, B., Sinquin, Y., Feltrin, A., and Ballif, C.: Laser applications in thin-film photovoltaics. Applied Physics B - Lasers and Optics 100(2), Special Issue: SI 427–436 (2010).Google Scholar
Liu, L.Q. and Wang, F.: Q-switched all-solid-state lasers and application in processing of thin-film solar cell. Proc. SPIE-Int. Soc. Opt. Eng. 7515, 75150J (6 pp.) (2009).Google Scholar
Slaoui, A., Chowdhury, A., Prathap, P., Said-Bacar, Z., Bahouka, A., and Mermet, F.: Laser processing for thin film crystalline silicon solar cells. Proc. SPIE-Int. Soc. Opt. Eng., 8473, 84730C (8 pp.) (2012).Google Scholar
Hank, J.J.: Laser processing technique for fabricating series-connected and tandem junction series-connected solar cells into a solar battery. U. S. Patent No. 4 292 092, September 29, 1981.Google Scholar
Carlson, D.E.: Solar cells. In Semiconductors and Semimetals; Pankove, J.I., ed.; Academic Press: NY, 1984; pp. 737.Google Scholar
Rofin-Sinar Technologies, Inc.: Lasers for a Sunny Future, http://www.rofin.com, (accessed June 3, 2014).Google Scholar
Carlson, D.E. and Arya, R.R.: Towards high performance amorphous silicon based photovoltaics. Optoelectronics 5 (2), 157169 (1990).Google Scholar
Baird, B., Gerke, T., Wieland, K., and Paudel, N.: P2 and P3 spatially shaped laser scribing of CdTe and a-Si thin film solar cells using a 532 nm Picosecond MOFPA. In Conference Proceedings of the 26th European Photovoltaic Solar Energy Conference; Hamburg, Germany, 2011; pp. 24712474.Google Scholar
Rekow, M., Murison, R., Panarello, T., Dunsky, C., Dinkel, C., Nikumb, S., Pern, J., and Mansfield, L.: CIGS P1, P2, P3 scribing processes using a pulse programmable industrial fiber laser. In Conference Proceedings of 25th European Photovoltaic Solar Energy Conference; Valencia, Spain, 2010; pp. 28622871.Google Scholar
AlSaggaf, A., Alarousu, E., Boulfrad, S., and Rothenberger, A.: Nd:YAG laser annealing investigation of screen-printed CIGS layer on PET: Layer annealing method for photovoltaic cell fabrication process. In Proceedings of 40th IEEE Photovoltaic Specialist Conference; IEEE: Piscataway, NJ, 2014; pp. 209303.Google Scholar
Meadows, H.J., Regesch, D., Schuler, T., Misra, S., Simonds, B.J., Scarpulla, M. A., Gerliz, V., Gütay, L., and Dale, P.: The importance of Se partial pressure in the laser annealing of CuInSe2 electrodeposited precursors. In Proceedings of 40th IEEE Photovoltaic Specialist Conference; IEEE: Piscataway, NJ, 2014; pp. 405408.Google Scholar
Simonds, B.J., Palekis, V., Van Devener, B., Ferekides, C., and Scarpulla, M.A.: Te-rich CdTe surface by pulsed UV laser treatment for ohmic back contact formation. In Proceedings of 40th IEEE Photovoltaic Specialist Conference; IEEE: Piscataway, NJ, 2014; pp. 24072411.Google Scholar
Kim, H., Pique, A., Kushto, G.P., Auyeung, R.C.Y., Lee, S.H., Arnold, C.B., and Kafafi, Z.H.: Dye-sensitized solar cells using laser processing techniques. Proc. SPIE-Int. Soc. Opt. Eng. 5339(1), 348356 (2004).Google Scholar
Petsch, T., Haenel, J., Clair, M., Keiper, B., and Scholz, C.: Laser processing of organic photovoltaic cells with a roll-to-roll manufacturing process. In Proceedings of the 26th European International Conference on Photovoltaic Solar Energy; Hamburg, Germany, 2011; pp. 224227.Google Scholar
Kim, H., Kushto, G.P., Arnold, C.B., Kafafi, Z.H., and Pique, A.: Laser processing of nanocrystalline TiO2 films for dye-sensitized solar cells. Appl. Phys. Lett. 85, 464466 (2004).Google Scholar
Okraku, E.W., Gupta, M.C., and Wright, K.D.: Pulsed laser annealing of P3HT/PCBM organic solar cells. Sol. Energy Mater. Sol. Cells 94(12), 20132017 (2010).Google Scholar
Shah, A. and Gupta, M.C.: Spectral selective surfaces for concentrated solar power receivers by laser sintering of tungsten micro and nano particles. Sol. Energy Mater. Sol. Cells 117, 489493 (2013).Google Scholar
Ungaro, C., Gray, S.K., and Gupta, M.C.: Graded-index structures for high-efficiency solar thermophotovoltaic emitting surfaces. Opt. Lett. 39(18), 52595262 (2014).Google Scholar
MacDonald, D.K.C.: Thermoelectricity: An Introduction to the Principles (Wiley, New York, 1962).Google Scholar
Nolas, G.S., Sharp, J.W., and Goldsmid, H.J.: Thermoelectrics: Basics Principles and New Materials Developments (Springer-Verlag, Berlin, Heidelberg, 2001).Google Scholar
Kittel, C.: Introduction to Solid State Physics (John Wiley & Sons, New York, 1996).Google Scholar
Franz, R. and Wiedemann, G.: Ueber die Waerme-Leitungsfaehigkeit der Metalle. Annal. Phys. Chem. 165(8), 497531 (1853).Google Scholar
Bux, S.K., Blair, R.G., Gogna, P.K., Lee, H., Chen, G., Dresselhaus, M. S., Kaner, R.B., and Fleurial, J.P.: Nanostructured bulk silicon as an effective thermoelectric material. Adv. Funct. Mater. 19(15), 24452452 (2009).Google Scholar
Wang, X.W., Lee, H., Lan, Y.C., Zhu, G.H., Joshi, G., Wang, D.Z., Yang, J., Muto, A.J., Tang, M.Y., Klatsky, J., Song, S., Dresselhaus, M.S., Chen, G., and Ren, Z.F.: Enhanced thermoelectric figure of merit in nanostructured n-type silicon germanium bulk alloy. Appl. Phys. Lett. 93(19), 193121 (2008).Google Scholar
Joshi, G., Lee, H., Lan, Y., Wang, X., Zhu, G., Wang, D., Gould, R.W., Cuff, D. C., Tang, M.Y., Dresselhaus, M.S., Chen, G., and Ren, Z.: Enhanced thermoelectric figure-of-Merit in nanostructured p-type silicon germanium bulk alloys. Nano Lett. 8(12), 46704674 (2008).Google Scholar
Minnich, A.J., Dresselhaus, M.S., Ren, Z.F., and Chen, G.: Bulk nanostructured thermoelectric materials: Current research and future prospects. Energy Environ. Sci. 2(5), 466479 (2009).Google Scholar
Poudel, B., Hao, Q., Ma, Y., Lan, Y., Minnich, A., Yu, B., Yan, X., Wang, D., Muto, A., Vashaee, D., Chen, X., Liu, J., Dresselhaus, M.S., Chen, G., and Ren, Z.: High-Thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 320(5876), 634638 (2008).Google Scholar
Ma, Y., Hao, Q., Poudel, B., Lan, Y., Yu, B., Wang, D., Chen, G., and Ren, Z.: Enhanced thermoelectric figure-of-merit in p-type nanostructured bismuth antimony tellurium alloys made from elemental chunks. Nano Lett. 8(8), 25802584 (2008).Google Scholar
Snyder, G.J. and Toberer, E.S.: Complex thermoelectric materials. Nat. Mater. 7(2), 105114 (2008).Google Scholar
Stoib, B., Langmann, T., Matich, S., Antesberger, T., Stein, N., Angst, S., Petermann, N., Schmechel, R., Schierning, G., Wolf, D.E., Wiggers, H., Stutzmann, M., and Brandt, M.S.: Laser-sintered thin films of doped SiGe nanoparticles. Appl. Phys. Lett. 100, 231907 (2012).Google Scholar
Scotti, G., Trusheim, D., Kanninen, P., Naumenko, D., Shulz-Ruhtenberg, M., Snitka, V., Kallio, T., and Franssila, S.: Picosecond laser ablation for silicon microfuel cell fabrication. J. Micromech. Microeng. 23, 055021 (2013).Google Scholar
Jager, U., Oesterlin, P., Kimmerle, A., and Preu, R.: Beam shaping – The key to high throughput selective emitter laser processing with a single laser system. In Proceedings of the 35th IEEE photovoltaic Specialists Conference; Honolulu, HI, 2010; pp. 14011405.Google Scholar