Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-29T21:48:30.129Z Has data issue: false hasContentIssue false

Building better dual-ion batteries

Published online by Cambridge University Press:  20 October 2020

Kostiantyn V. Kravchyk*
Affiliation:
Laboratory for Thin Films and Photovoltaics, Empa – Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, DübendorfCH-8600, Switzerland Laboratory of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, ZürichCH-8093, Switzerland
Maksym V. Kovalenko*
Affiliation:
Laboratory for Thin Films and Photovoltaics, Empa – Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, DübendorfCH-8600, Switzerland Laboratory of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, ZürichCH-8093, Switzerland
*
Address all correspondence to Kostiantyn V. Kravchyk at [email protected] and Maksym V. Kovalenko at [email protected]
Address all correspondence to Kostiantyn V. Kravchyk at [email protected] and Maksym V. Kovalenko at [email protected]
Get access

Abstract

This perspective article summarizes the operational principles of dual-ion batteries and highlights the main issues in the interpretation and reporting of their electrochemical performance.

Secondary dual-ion batteries (DIBs) are emerging stationary energy storage systems that have been actively explored in view of their low cost, high energy efficiency, power density, and long cycling life. Nevertheless, a critical assessment of the literature in this field points to numerous inaccuracies and inconsistencies in reported performance, primarily caused by the exclusion of the capacity of used electrolytes and the use of non-charge-balanced batteries. Ultimately, these omissions have a direct impact on the assessment of the energy and power density of DIBs. Aiming to secure further advancement of DIBs, in this work, we critically review current research pursuits and summarize the operational mechanisms of such batteries. The particular focus of this perspective is put on highlighting the main issues in the interpretation and reporting of the electrochemical performance of DIBs. To this end, we survey the prospects of these stationary storage systems, emphasizing the practical hurdles that remain to be addressed.

Type
Perspective
Copyright
Copyright © The Author(s), 2020, published on behalf of Materials Research Society by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Stephan, A., Battke, B., Beuse, M.D., Clausdeinken, J.H., and Schmidt, T.S.: Limiting the public cost of stationary battery deployment by combining applications. Nat. Energy 1, 16079 (2016).CrossRefGoogle Scholar
Comello, S. and Reichelstein, S.: The emergence of cost effective battery storage. Nat. Commun. 10, 2038 (2019).CrossRefGoogle ScholarPubMed
Sui, Y., Liu, C., Masse, R.C., Neale, Z.G., Atif, M., AlSalhi, M., and Cao, G.: Dual-ion batteries: The emerging alternative rechargeable batteries. Energy Storage Mater. 25, 132 (2020).CrossRefGoogle Scholar
Hao, J., Li, X., Song, X., and Guo, Z.: Recent progress and perspectives on dual-ion batteries. EnergyChem 1, 100004 (2019).CrossRefGoogle Scholar
Placke, T., Heckmann, A., Schmuch, R., Meister, P., Beltrop, K., and Winter, M.: Perspective on performance, cost, and technical challenges for practical dual-ion batteries. Joule 2, 25282550 (2018).CrossRefGoogle Scholar
Shpigel, N., Malchik, F., Levi, M.D., Gavriel, B., Bergman, G., Tirosh, S., Leifer, N., Goobes, G., Cohen, R., Weitman, M., Aviv, H., Tischler, Y.R., Aurbach, D., and Gogotsi, Y.: New aqueous energy storage devices comprising graphite cathodes, MXene anodes and concentrated sulfuric acid solutions. Energy Storage Mater. 32, 110 (2020).CrossRefGoogle Scholar
Shi, X., Deng, T., and Zhu, G.: MXene as a tolerable anode material accommodating large ions in dual-ion batteries. Ceram. Int. 46, 2488724892 (2020).CrossRefGoogle Scholar
Huang, Y., Xiao, R., Ma, Z., and Zhu, W.: Developing dual-graphite batteries with pure 1-ethyl-3-methylimidazolium trifluoromethanesulfonate ionic liquid as the electrolyte. ChemElectroChem 6, 46814688 (2019).CrossRefGoogle Scholar
Fang, Y., Chen, C., Fan, J., Zhang, M., Yuan, W., and Li, L.: Reversible interaction of 1-butyl-1-methylpyrrolidinium cations with 5,7,12,14-pentacenetetrone from a pure ionic liquid electrolyte for dual-ion batteries. ChemComm 55, 83338336 (2019).Google ScholarPubMed
Kravchyk, K.V., Bhauriyal, P., Piveteau, L., Guntlin, C.P., Pathak, B., and Kovalenko, M.V.: High-energy-density dual-ion battery for stationary storage of electricity using concentrated potassium fluorosulfonylimide. Nat. Commun. 9, 4469 (2018).CrossRefGoogle ScholarPubMed
Dubey, R.J.C., Nüssli, J., Piveteau, L., Kravchyk, K.V., Rossell, M.D., Campanini, M., Erni, R., Kovalenko, M.V., and Stadie, N.P.: Zeolite-templated carbon as the cathode for a high energy density dual-ion battery. ACS Appl. Mater. Interfaces 11, 1768617696 (2019).CrossRefGoogle ScholarPubMed
Walter, M., Kravchyk, K.V., Ibáñez, M., and Kovalenko, M.V.: Efficient and inexpensive sodium–magnesium hybrid battery. Chem. Mater. 27, 74527458 (2015).CrossRefGoogle Scholar
Kravchyk, K.V., Wang, S., Piveteau, L., and Kovalenko, M.V.: Efficient aluminum chloride natural graphite battery. Chem. Mater. 29, 44844492 (2017).CrossRefGoogle Scholar
Fan, H., Qi, L., Yoshio, M., and Wang, H.: Hexafluorophosphate intercalation into graphite electrode from ethylene carbonate/ethylmethyl carbonate. Solid State Ionics 304, 107112 (2017).CrossRefGoogle Scholar
Fan, H., Qi, L., and Wang, H.: Intercalation behavior of hexafluorophosphate into graphite electrode from propylene/ethylmethyl carbonates. J. Electrochem. Soc. 164, A2262A2267 (2017).CrossRefGoogle Scholar
Fan, H., Qi, L., and Wang, H.: Hexafluorophosphate anion intercalation into graphite electrode from methyl propionate. Solid State Ionics 300, 169174 (2017).CrossRefGoogle Scholar
Heckmann, A., Thienenkamp, J., Beltrop, K., Winter, M., Brunklaus, G., and Placke, T.: Towards high-performance dual-graphite batteries using highly concentrated organic electrolytes. Electrochim. Acta 260, 514525 (2018).CrossRefGoogle Scholar
Balabajew, M., Kranz, T., and Roling, B.: Ion-transport processes in dual-Ion cells utilizing a Pyr1,4TFSI/LiTFSI mixture as the electrolyte. ChemElectroChem 2, 19912000 (2015).CrossRefGoogle Scholar
Meister, P., Siozios, V., Reiter, J., Klamor, S., Rothermel, S., Fromm, O., Meyer, H.-W., Winter, M., and Placke, T.: Dual-ion cells based on the electrochemical intercalation of asymmetric fluorosulfonyl-(trifluoromethanesulfonyl) imide anions into graphite. Electrochim. Acta 130, 625633 (2014).CrossRefGoogle Scholar
Huang, Y., Qi, L., and Wang, H.: Intercalation of anions into graphite electrode from butylene carbonate in activated carbon/graphite hybrid capacitors. Electrochim. Acta 258, 380387 (2017).CrossRefGoogle Scholar
Gao, J., Yoshio, M., Qi, L., and Wang, H.: Solvation effect on intercalation behaviour of tetrafluoroborate into graphite electrode. J. Power Sources 278, 452457 (2015).CrossRefGoogle Scholar
Gao, J., Tian, S., Qi, L., and Wang, H.: Intercalation manners of perchlorate anion into graphite electrode from organic solutions. Electrochim. Acta 176, 2227 (2015).CrossRefGoogle Scholar
Yagi, S., Ichitsubo, T., Shirai, Y., Yanai, S., Doi, T., Murase, K., and Matsubara, E.: A concept of dual-salt polyvalent-metal storage battery. J. Mater. Chem. A 2, 11441149 (2014).CrossRefGoogle Scholar
Kravchyk, K.V., Walter, M., and Kovalenko, M.V.: A high-voltage concept with sodium-ion conducting β-alumina for magnesium-sodium dual-ion batteries. Commun. Chem. 2, 84 (2019).CrossRefGoogle Scholar
Kravchyk, K.V. and Kovalenko, M.V.: Rechargeable dual-ion batteries with graphite as a cathode: Key challenges and opportunities. Adv. Energy Mater. 9, 1901749 (2019).CrossRefGoogle Scholar
Holoubek, J., Yin, Y., Li, M., Yu, M., Meng, Y.S., Liu, P., and Chen, Z.: Exploiting mechanistic solvation kinetics for dual-graphite batteries with high power output at extremely low temperature. Angew. Chem. Int. Ed. Engl. 58, 1889218897 (2019).CrossRefGoogle ScholarPubMed
Li, Q., Lu, D., Zheng, J., Jiao, S., Luo, L., Wang, C.-M., Xu, K., Zhang, J.-G., and Xu, W.: Li-desolvation dictating lithium-ion battery's low-temperature performances. ACS Appl. Mater. Interfaces 9, 4276142768 (2017).CrossRefGoogle ScholarPubMed
Zhang, S.S., Xu, K., and Jow, T.R.: The low temperature performance of Li-ion batteries. J. Power Sources 115, 137140 (2003).CrossRefGoogle Scholar
Wang, M., Zhang, F., Lee, C.-S., and Tang, Y.: Low-cost metallic anode materials for high performance rechargeable batteries. Adv. Energy Mater. 7, 1700536 (2017).CrossRefGoogle Scholar
Ji, B., Zhang, F., Song, X., and Tang, Y.: A novel potassium-ion-based dual-ion battery. Adv. Mater. 29, 1700519 (2017).CrossRefGoogle ScholarPubMed
Zhang, X., Tang, Y., Zhang, F., and Lee, C.-S.: A novel aluminum–graphite dual-ion battery. Adv. Energy Mater. 6, 1502588 (2016).CrossRefGoogle Scholar
Tong, X., Zhang, F., Ji, B., Sheng, M., and Tang, Y.: Carbon-coated porous aluminum foil anode for high-rate, long-term cycling stability, and high energy density dual-Ion batteries. Adv. Mater. 28, 99799985 (2016).CrossRefGoogle ScholarPubMed
Yu, D., Cheng, L., Chen, M., Wang, J., Zhou, W., Wei, W., and Wang, H.: High-performance phosphorus–graphite dual-ion battery. ACS Appl. Mater. Interfaces 11, 4575545762 (2019).CrossRefGoogle ScholarPubMed
Gunawardhana, N., Park, G.-J., Dimov, N., Thapa, A.K., Nakamura, H., Wang, H., Ishihara, T., and Yoshio, M.: Constructing a novel and safer energy storing system using a graphite cathode and a MoO3 anode. J. Power Sources 196, 78867890 (2011).Google Scholar
Fan, J., Fang, Y., Xiao, Q., Huang, R., Li, L., and Yuan, W.: A dual-ion battery with a ferric ferricyanide anode enabling reversible Na intercalation. Energy Technol. 7, 1800978 (2019).CrossRefGoogle Scholar
Deunf, É, Jiménez, P., Guyomard, D., Dolhem, F., and Poizot, P.: A dual-ion battery using diamino–rubicene as anion–inserting positive electrode material. Electrochem. Commun. 72, 6468 (2016).CrossRefGoogle Scholar
Rodríguez-Pérez, I.A., Jian, Z., Waldenmaier, P.K., Palmisano, J.W., Chandrabose, R.S., Wang, X., Lerner, M.M., Carter, R.G., and Ji, X.: A hydrocarbon cathode for dual-ion batteries. ACS Energy Lett. 1, 719723 (2016).CrossRefGoogle Scholar
Deunf, É, Moreau, P., Quarez, É, Guyomard, D., Dolhem, F., and Poizot, P.: Reversible anion intercalation in a layered aromatic amine: A high-voltage host structure for organic batteries. Carbon 4, 61316139 (2016).Google Scholar
Aubrey, M.L. and Long, J.R.: A dual-ion battery cathode via oxidative insertion of anions in a metal–organic framework. J. Am. Chem. Soc. 137, 1359413602 (2015).CrossRefGoogle Scholar
Li, C., Yang, H., Xie, J., Wang, K., Li, J., and Zhang, Q.: Ferrocene-based mixed-valence metal–organic framework as an efficient and stable cathode for lithium-ion-based dual-ion battery. ACS Appl. Mater. Interfaces 12, 3271932725 (2020).CrossRefGoogle ScholarPubMed
Chen, C.-Y., Matsumoto, K., Kubota, K., Hagiwara, R., and Xu, Q.: An energy-dense solvent-free dual-ion battery. Adv. Funct. Mater. 30, 2003557 ( 2020).CrossRefGoogle Scholar
Li, Y., An, Q., Cheng, Y., Liang, Y., Ren, Y., Sun, C.-J., Dong, H., Tang, Z., Li, G., and Yao, Y.: A high-voltage rechargeable magnesium-sodium hybrid battery. Nano Energy 34, 188194 (2017).CrossRefGoogle Scholar
Rashad, M., Li, X., and Zhang, H.: Magnesium/lithium-ion hybrid battery with high reversibility by employing NaV3O8⋅1.69H2O nanobelts as a positive electrode. ACS Appl. Mater. Interfaces 10, 2131321320 (2018).CrossRefGoogle ScholarPubMed
Lin, M.-C., Gong, M., Lu, B., Wu, Y., Wang, D.-Y., Guan, M., Angell, M., Chen, C., Yang, J., Hwang, B.-J., and Dai, H.: An ultrafast rechargeable aluminium-ion battery. Nature 520, 324328 (2015).CrossRefGoogle ScholarPubMed
Wu, Y., Gong, M., Lin, M.-C., Yuan, C., Angell, M., Huang, L., Wang, D.-Y., Zhang, X., Yang, J., Hwang, B.-J., and Dai, H.: 3D graphitic foams derived from chloroaluminate anion intercalation for ultrafast aluminum-ion battery. Adv. Mater. 28, 92189222 (2016).CrossRefGoogle ScholarPubMed
Yu, X., Wang, B., Gong, D., Xu, Z., and Lu, B.: Graphene nanoribbons on highly porous 3D graphene for high-capacity and ultrastable Al-ion batteries. Adv. Mater. 29, 1604118 (2017).CrossRefGoogle ScholarPubMed
Song, Y., Jiao, S., Tu, J., Wang, J., Liu, Y., Jiao, H., Mao, X., Guo, Z., and Fray, D.J.: A long-life rechargeable Al ion battery based on molten salts. J. Mater. Chem. A 5, 12821291 (2017).CrossRefGoogle Scholar
Yang, G.Y., Chen, L., Jiang, P., Guo, Z.Y., Wang, W., and Liu, Z.P.: Fabrication of tunable 3D graphene mesh network with enhanced electrical and thermal properties for high-rate aluminum-ion battery application. RSC Adv. 6, 4765547660 (2016).CrossRefGoogle Scholar
Zhang, L., Chen, L., Luo, H., Zhou, X., and Liu, Z.: Large-sized few-layer graphene enables an ultrafast and long-life aluminum-ion battery. Adv. Energy Mater. 7, 1700034 (2017).CrossRefGoogle Scholar
Jiao, S., Lei, H., Tu, J., Zhu, J., Wang, J., and Mao, X.: An industrialized prototype of the rechargeable Al/AlCl3-[EMIm]Cl/graphite battery and recycling of the graphitic cathode into graphene. Carbon 109, 276281 (2016).CrossRefGoogle Scholar
Sun, H., Wang, W., Yu, Z., Yuan, Y., Wang, S., and Jiao, S.: A new aluminium-ion battery with high voltage, high safety and low cost. ChemComm 51, 1189211895 (2015).Google ScholarPubMed
Stadie, N.P., Wang, S., Kravchyk, K.V., and Kovalenko, M.V.: Zeolite-templated carbon as an ordered microporous electrode for aluminum batteries. ACS Nano 11, 19111919 (2017).CrossRefGoogle ScholarPubMed
Hudak, N.S.: Chloroaluminate-doped conducting polymers as positive electrodes in rechargeable aluminum batteries. J. Phys. Chem. C 118, 52035215 (2014).CrossRefGoogle Scholar
Walter, M., Kravchyk, K.V., Böfer, C., Widmer, R., and Kovalenko, M.V.: Polypyrenes as high-performance cathode materials for aluminum batteries. Adv. Mater. 30, 1705644 (2018).CrossRefGoogle ScholarPubMed
Lai, P.K. and Skyllas-Kazacos, M.: Aluminium deposition and dissolution in aluminium chloride-n-butylpyridinium chloride melts. Electrochim. Acta 32, 14431449 (1987).CrossRefGoogle Scholar
Chao-Cheng, Y.: Electrodeposition of aluminum in molten AlCl3-n-butylpyridinium chloride electrolyte. Mater. Chem. Phys. 37, 355361 (1994).CrossRefGoogle Scholar
Zhao, Y. and VanderNoot, T.J.: Electrodeposition of aluminium from nonaqueous organic electrolytic systems and room temperature molten salts. Electrochim. Acta 42, 313 (1997).CrossRefGoogle Scholar
Jiang, T., Chollier Brym, M.J., Dubé, G., Lasia, A., and Brisard, G.M.: Electrodeposition of aluminium from ionic liquids: Part I—Electrodeposition and surface morphology of aluminium from aluminium chloride (AlCl3)–1-ethyl-3-methylimidazolium chloride ([EMIm]Cl) ionic liquids. Surf. Coat. Technol. 201, 19 (2006).CrossRefGoogle Scholar
Jiang, T., Chollier Brym, M.J., Dubé, G., Lasia, A., and Brisard, G.M.: Electrodeposition of aluminium from ionic liquids: Part II—Studies on the electrodeposition of aluminum from aluminum chloride (AICl3)-trimethylphenylammonium chloride (TMPAC) ionic liquids. Surf. Coat. Technol. 201, 1018 (2006).CrossRefGoogle Scholar
Tu, J., Wang, S., Li, S., Wang, C., Sun, D., and Jiao, S.: The effects of anions behaviors on electrochemical properties of Al/graphite rechargeable aluminum-ion battery via molten AlCl3-NaCl liquid electrolyte. J. Electrochem. Soc. 164, A3292A3302 (2017).CrossRefGoogle Scholar
Abood, H.M.A., Abbott, A.P., Ballantyne, A.D., and Ryder, K.S.: Do all ionic liquids need organic cations? Characterisation of [AlCl2⋅nAmide]AlCl4 and comparison with imidazolium based systems. Chem. Commun. 47, 35233525 (2011).CrossRefGoogle Scholar
Abbott, A.P., Harris, R.C., Hsieh, Y.-T., Ryder, K.S., and Sun, I.W.: Aluminium electrodeposition under ambient conditions. Phys. Chem. Chem. Phys. 16, 1467514681 (2014).CrossRefGoogle ScholarPubMed
Smith, E.L., Abbott, A.P., and Ryder, K.S.: Deep eutectic solvents (DESs) and their applications. Chem. Rev. 114, 1106011082 (2014).CrossRefGoogle ScholarPubMed
Golubkov, A.W., Fuchs, D., Wagner, J., Wiltsche, H., Stangl, C., Fauler, G., Voitic, G., Thaler, A., and Hacker, V.: Thermal-runaway experiments on consumer Li-ion batteries with metal-oxide and olivin-type cathodes. RSC Adv. 4, 36333642 (2014).CrossRefGoogle Scholar
Kravchyk, K.V., Seno, C., and Kovalenko, M.V.: Limitations of chloroaluminate ionic liquid anolytes for aluminum–graphite dual-ion batteries. ACS Energy Lett. 5, 545549 (2020).CrossRefGoogle Scholar
Betz, J., Bieker, G., Meister, P., Placke, T., Winter, M., and Schmuch, R.: Theoretical versus practical energy: a plea for more transparency in the energy calculation of different rechargeable battery systems. Adv. Energy Mater. 9, 1803170 (2019).CrossRefGoogle Scholar
Ferrara, Chiara, Dall’Asta, Valentina, Berbenni, Vittorio, Quartarone, Eliana and Mustarelli, Piercarlo: Physicochemical characterization of AlCl3 –1-ethyl-3-methylimidazolium chloride ionic liquid electrolytes for aluminum rechargeable batteries. J. Phys. Chem. C 121, 2660726614 (2017).CrossRefGoogle Scholar
Supplementary material: File

Kravchyk and Kovalenko supplementary material

Kravchyk and Kovalenko supplementary material

Download Kravchyk and Kovalenko supplementary material(File)
File 124.1 KB