Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-05T14:05:12.011Z Has data issue: false hasContentIssue false

X-Ray Magnetic Circular Dichroism Spectroscopy and Microscopy

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

The advent of electron accelerators dedicated to the production of high-intensity x-rays has revitalized experimental techniques based on x-ray absorption. A recent variant is to use circularly polarized x-rays generated either by use of out-of-plane radiation from a bending magnet or from a specially designed “insertion device.” This new field of x-ray magnetic circular dichroism (XMCD) shows considerable promise in spectroscopy and microscopy of magnetic materials. In this article, we describe the nature of XMCD, offer a few examples of recent progress, and review the prospects for future development using the newly constructed Advanced Light Source (ALS).

Type
Magnetism on a Microscopic Scale
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Stohr, J. and Wu, Y., in New Directions in Research with Third-Generation Soft X-ray Synchrotron Radiation Sources, edited by Schlachter, A.S. and Wuilleumier, F.J., NATO ASI Series (Series E: Applied Sciences) vol. 254, p. 221.Google Scholar
2.Erskine, J.L. and Stern, E.A., Phys. Rev. B 12 (1975) p. 5016.CrossRefGoogle Scholar
3.Chen, C.T., Sette, F., Ma, Y., and Modesti, S., Phys. Rev. B 42 (1990) p. 7262.CrossRefGoogle Scholar
4.Mott, N.F., Proc. Phys. Soc. London, Sect. A 62 (1949) p. 416.CrossRefGoogle Scholar
5.Thole, B.T., Carra, P., Sette, F., and van der Laan, G., Phys. Rev. Lett. 68 (1992) p. 1943.CrossRefGoogle Scholar
6.Samant, M.G., Stohr, J., Parkin, S.S., Held, G.A., Hermsmeier, B.D., Herman, F., van Schilfgaarde, M., Duda, L-C., Mancini, D.C., Wassdahl, N., and Nakajima, R., Phys. Rev. Lett. 72 (7) (1994) p. 1112.CrossRefGoogle Scholar
7.Chen, C.T., Idzerda, Y.U., Lin, H-J., Meigs, G., Chaiken, A., Prinz, G.A., and Ho, G.H., Phys. Rev. B. 48 (1993) p. 642.CrossRefGoogle Scholar
8.Tonner, B.P., Harp, G.R., Koranda, S.F., and Zhang, J., Rev. Sci. Instrum. 63 (1992) p. 564; Tonner, B.P. and Dunham, D., Nucl. Instrum. Methods A 347 (1994) p. 436.CrossRefGoogle Scholar
9.Tonner, B.P., Nucl. Instrum. Methods A 291 (1990) p. 60.CrossRefGoogle Scholar
10.Rempfer, G.F., J. Appl. Phys. 67 (1990) p. 6027.CrossRefGoogle Scholar
11.Ade, H., Zhang, X., Cameron, S., Costello, C., Kirz, J., and, Williams, S., Science 258 (1992) p. 972; Ade, H., Zhang, X., Jacobsen, C., Kirz, J., Lindaas, S., Williams, S., and Wirick, S., Nucl. Instrum. Methods A 347 (1994) p. 431.CrossRefGoogle Scholar
12.Stohr, J., Wu, Y., Hermsmeier, B.D., Samant, M.G., Harp, G.R., Koranda, S., Dunham, D., and Tonner, B.P., Science 259 (1993) p. 658.CrossRefGoogle Scholar
13.Tonner, B.P., Dunham, D., Zhang, J., O'Brien, W.L., Samant, M.G., Weller, D., Hermsmeier, B.D., and Stohr, J., Nucl. Instrum. Methods A 347 (1994) p. 142.CrossRefGoogle Scholar