Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-05T13:46:50.864Z Has data issue: false hasContentIssue false

What is the Limit of Nanoparticle Strengthening?

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

The stress required to deform a perfect crystal to its elastic limit while maintaining perfect periodicity, the so-called ideal strength, sets the gold standard for the strength of a given material. Materials this strong would be of obvious engineering importance, potentially enabling more efficient turbines for energy production, lighter materials for transportation applications, and more reliable materials for nuclear reactor applications. In practice, the strength of engineering materials is often more than two orders of magnitude less than the ideal strength due to easily activated deformation processes involving dislocations. For many materials, precipitate strengthening is a promising approach to impede dislocation motion and thereby improves strength and creep resistance. This observation begs the question: What are the limits of nanoparticle strengthening? Can the ideal strength of a matrix material be reached? To answer these questions, we need a detailed, atomic scale understanding of the interactions between dislocations and obstacles. Fortunately, simulations are beginning to explore this interaction.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Vitek, V., Prog. Mater. Sci. 36, 1 (1992).CrossRefGoogle Scholar
2Xu, X., Beckman, S.P., Specht, P., Weber, E.R., Chrzan, D.C., Erni, R.P., Arslan, I., Browning, N., Bleloch, A., Kisielowski, C., Phys. Rev. Lett. 95 (2005).Google Scholar
3Trinkle, D.R., Woodward, C., Science 311, 177 (2006).Google Scholar
4Marquis, E.A., Seidman, D.N., Asta, M., Woodward, C., Ozolins, V., Phys. Rev. Lett. 91 (2003).Google Scholar
5Frenkel, J., Z. Angew. Phys. 37, 572 (1926).Google Scholar
6Polyani, M., Z. Phys. A: Hadrons Nucl. 89, 660 (1934).CrossRefGoogle Scholar
7Orowan, E., Z. Phys. A: Hadrons Nucl. 89, 605 (1934).CrossRefGoogle Scholar
8Taylor, G.I., Proc. R. Soc. London, Ser. A 145, 362 (1934).Google Scholar
9Dash, W.C., J. Appl. Phys. 30, 459 (1959).Google Scholar
10Krenn, C.R., Roundy, D., Cohen, M.L., Chrzan, D.C., Morris, J.W., Phys. Rev. B 65 (2002).Google Scholar
11Li, T., Morris, J.W., Nagasako, N., Kuramoto, S., Chrzan, D.C., Phys. Rev. Lett. 98 (2007).Google Scholar
12Kocks, U.F., Philos. Mag. 13, 541 (1966).Google Scholar
13Foreman, A.J.E., Makin, M.J., Philos. Mag. 14, 911 (1966).CrossRefGoogle Scholar
14Altintas, S., Hanson, K., Morris, J.W., J. Eng. Mater. Technol., Trans. ASME 98, 86 (1976).CrossRefGoogle Scholar
15Altintas, S., Morris, J.W., JOM 27, A28 (1975).Google Scholar
16Altintas, S., Morris, J.W., Acta Metall. 34, 801 (1986).CrossRefGoogle Scholar
17Altintas, S., Morris, J.W., Acta Metall. 34, 809 (1986).CrossRefGoogle Scholar
18Hanson, K., Morris, J.W., J. Appl. Phys. 49, 3266 (1978).CrossRefGoogle Scholar
19Hanson, K., Morris, J.W., J. Appl. Phys. 46, 2378 (1975).Google Scholar
20Hanson, K., Morris, J.W., J. Appl. Phys. 46, 983 (1975).CrossRefGoogle Scholar
21Glazer, J., Morris, J.W., Philos. Mag. A 56, 507 (1987).CrossRefGoogle Scholar
22Glazer, J., Morris, J.W., Acta Metall. 36, 907 (1988).CrossRefGoogle Scholar
23Labusch, R., J. Appl. Phys. 48, 4550 (1977).Google Scholar
24Bacon, D.J., Kocks, U.F., Scatterg, R.O., Philos. Mag. 28, 1241 (1973).CrossRefGoogle Scholar
25Seidman, D.N., Marquis, E.A., Dunand, D.C., Acta Mater. 50, 4021 (2002).Google Scholar
26Liu, W., Pretorius, T., Rosner, H., Ronnpagel, D., Nembach, E., Mater. Sci. Eng., A 234, 687 (1997).CrossRefGoogle Scholar
27Li, B.Q., Wawner, F.E., Aluminium Alloys: Their Physical and Mechanical Properties, Pts 1–3 331–33, 1359 (2000).Google Scholar
28Nogiwa, K., Nita, N., Matsui, H., J. Nucl. Mater. 367, 392 (2007).CrossRefGoogle Scholar
29Nogiwa, K., Yamamoto, T., Fukumoto, K., Matsui, H., Nagai, Y., Yubuta, K., Hasegawa, M., J. Nucl. Mater. 307, 946 (2002).CrossRefGoogle Scholar
30Othen, P.J., Jenkins, M.L., Smith, G.D.W., Philos. Mag. A 70, 1 (1994).Google Scholar
31Lozano-Perez, S., Jenkins, M.L., Titchmarsh, J.M., Philos. Mag. Lett. 86, 367 (2006).Google Scholar
32Clark, B.G., Robertson, I.M., Dougherty, L.M., Ahn, D.C., Sofronis, P., J. Mater. Res. 20, 1792 (2005).CrossRefGoogle Scholar
33Vivas, M., Lours, P., Levaillant, C., Couret, A., Casanove, M.J., Coujou, A., Aluminium Alloys: Their Physical and Mechanical Properties, Pts 1–3 217, 1305 (1996).Google Scholar
34Delmas, F., Casanove, M.J., Couret, A., Coujou, A., Aluminum Alloys 2002: Their Physical and Mechanical Properties Pts 1–3 396–4, 1109 (2002).Google Scholar
35Schaublin, R., Yao, Z., Spatig, P., Victoria, M., Mater. Sci. Eng., A 400, 251 (2005).CrossRefGoogle Scholar
36Robach, J.S., Robertson, I.M., Wirth, B.D., Arsenlis, A., Philos. Mag. 83, 955 (2003).CrossRefGoogle Scholar
37Matsukawa, Y., Zinkle, S.J., J. Nucl. Mater. 329–33, 919 (2004).CrossRefGoogle Scholar
38Foreman, A.J.E., Makin, M.J., Can. J. Phys. 45, 511 (1967).Google Scholar
39Osetsky, Y.N., Bacon, D.J., Modell. Simul. Mater. Sci. Eng. 11, 427 (2003).CrossRefGoogle Scholar
40Ackland, G.J., Bacon, D.J., Calder, A.F., Harry, T., Philos. Mag. A 75, 713 (1997).CrossRefGoogle Scholar
41Ackland, G.J., Tichy, G., Vitek, V., Finnis, M.W., Philos. Mag. A 56, 735 (1987).CrossRefGoogle Scholar
42Osetsky, Y.N., Bacon, D.J., J. Nucl. Mater. 323, 268 (2003).CrossRefGoogle Scholar
43Shim, J.H., Cho, Y.W., Kwon, S.C., Kim, W.W., Wirth, B.D., Appl. Phys. Lett. 90 (2007).Google Scholar
44Harry, T., Bacon, D.J., Acta Mater. 50, 195 (2002).CrossRefGoogle Scholar
45Harry, T., Bacon, D.J., Acta Mater. 50, 209 (2002).CrossRefGoogle Scholar
46Osetsky, Y.N., Bacon, D.J., Mohles, V., Philos. Mag. 83, 3623 (2003).CrossRefGoogle Scholar
47Nedelcu, S., Kizler, P., Schmauder, S., Moldovan, N., Modell. Simul. Mater. Sci. Eng. 8, 181 (2000).Google Scholar
48Clatterbuck, D.M., Chrzan, D.C., Morris, J.W., Acta Mater. 51, 2271 (2003).Google Scholar
49Saito, T., Furuta, T., Hwang, J.H., Kuramoto, S., Nishino, K., Suzuki, N., Chen, R., Yamada, A., Ito, K., Seno, Y., Nonaka, T., Ikehata, H., Nagasako, N., Iwamoto, C., Ikuhara, Y., Sakuma, T., Science 300, 464 (2003).Google Scholar