Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-20T18:02:41.603Z Has data issue: false hasContentIssue false

What Is Shaking in the Sandbox?

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

In 1831, Faraday reported to the Royal Society of London that granular material inside a container, when vibrated, would spontaneously begin to exhibit convection rolls, similar to what is observed in normal fluids when heated from below. This observation indicated that not only can a granular material act like a fluid, but also that vibrations can affect the properties of these materials in important ways. Such phenomena are of immediate practical importance because granular materials exist all around us. We use sand and gravel to build the roads we drive on; we process grain to provide our food supply; we mine ore to provide coal, minerals, and precious commodities; we take powders and pills to cure what ails us. Many of the phenomena observed in granular media are prototypical examples of complex, nonequilibrium behavior that is also found in an increasing number of other systems. As a result, sandpiles have served as a macroscopic and visually appealing metaphor for thinking about a number of microscopic systems that are not directly accessible to our senses. Despite the common occurrence of these materials, their properties are not at all well understood and most of our knowledge centers on the subset of static, equilibrium properties of granular matter. Only over the last few years have physicists and engineers begun to unravel some of the exceptional time-dependent, nonequilibrium properties that these seemingly simple materials exhibit. This review focuses on recent developments in the newly emerging field of granular dynamics and, in particular, addresses the role of vibration in determining the phenomena observed in such media.

Type
Mesoscopic Disorder
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Faraday, M., Trans. R. Soc. London 52 (1831) p. 299.Google Scholar
2.Jaeger, H.M. and Nagel, S.R., Science 255 (1992) p. 1523.CrossRefGoogle Scholar
3. Here and throughout this article we assume the absence of cohesive forces between grains, caused, e.g., by moisture or electrostatic charging.Google Scholar
4.Reynolds, O., Philos. Mag. 20 (1885) p. 469.CrossRefGoogle Scholar
5.Liu, C-h. and Nagel, S.R., Phys. Rev. Lett. 68 (1992) p. 2301.CrossRefGoogle Scholar
6. This is dealt with in the theory of Hertzian contacts and gives v ∝ P1/6. See Landau, L.D. and Lifshitz, E.M., Theory of Elasticity, Chapter 1 (Pergamon, New York, 1986), and Duffy, J. and Mindlin, R.D., J. Appl. Mech. (ASME) 24 (1957) p. 585.Google Scholar
7.Leibig, M. (to be published).Google Scholar
8. See the article by Weitz, D. and Pine, D. in this issue.Google Scholar
9.Liu, C-h. and Nagel, S.R., J. Phys.: Conden. Matter 6 (1994) p. 1.Google Scholar
10.Liu, C-h. (to be published).Google Scholar
11.Jaeger, H.M., Liu, C-h., and Nagel, S.R., Phys. Rev. Lett. 62 (1989) p. 40.CrossRefGoogle Scholar
12.Tinkham, M., Introduction to Superconductivity (Krieger, Huntington, New York, 1980) p. 174.Google Scholar
13.Guy, C.N., G. Phys. F 8 (1978) p. 1309.Google Scholar
14.Luo, W., Nagel, S.R., Rosenbaum, T.F., and Rosensweig, R.E., Phys. Rev. Lett. 67 (1991) p. 2721.CrossRefGoogle Scholar
15.Lottis, D.K., White, R.M., and Dahlberg, D.E., Phys. Rev. Lett. 67 (1991) p. 362.CrossRefGoogle Scholar
16.Souletie, J., J. Phys. (Paris) 44 (1983) p. 1095.CrossRefGoogle Scholar
17.de Gennes, P.G., Superconductivity of Metals and Alloys (Benjamin, New York, 1966) p. 83.Google Scholar
18.Roberts, A.W., in Handbook of Powder Science and Technology, edited by Fayed, M.E. and Otten, L. (Van Nostrand Reinhold, New York, 1984) p. 181; Shinohara, K., Handbook of Powder Science and Technology, edited by Fayed, M.E. and Otten, L. (Van Nostrand Reinhold, New York, 1984) p. 143.Google Scholar
19.Duke, T.A., Barker, G.C., and Mehta, A., Euro-phys. Lett. 13 (1990) p. 19.CrossRefGoogle Scholar
20.Barker, G.C. and Mehta, A., Phys. Rev. E 47 (1993) p. 184; D. Hong (preprint).Google Scholar
21.Fandrich, C., Lau, C.N., Knight, J.B., Jaeger, H.M., and Nagel, S.R. (to be published).Google Scholar
22.Liu, A.D., Knight, J.B., Grier, D.G., and Jaeger, H.M. (to be published).Google Scholar
23.Alder, B. J. and Wainwright, T.E., Phys. Rev. 127 (1962) p. 359; Zollweg, J.A. and Chester, G.V., Phys. Rev. B 46 (1992) p. 11186; Lee, J. and Strandburg, K.J., Phys. Rev. B p. 11190.CrossRefGoogle Scholar
24.Shahinpoor, M., Powder Technol. 25 (1980) p. 163; K-I. Kanatani, Phys. Rev. B 30 (1981) p. 217; Mehta, A. and Edwards, S.F., Phys. A 157 (1989) p. 1091; Edwards, S.F. and Oakeshott, R.B.S., Phys. A p. 1080; Mehta, A. and Edwards, S.F., Phys. A 168 (1990) p. 714; Barker, G.C. and Mehta, A. , Phys. Rev. A 45 (1992) p. 3435.CrossRefGoogle Scholar
25. In the absence of particle friction with external walls, the trapping and escape of interstitial air during shaking can also initiate convection. [Behringer, R.P., Bull. Am. Phys. Soc. 39 (1) (1994) p. 369.]Google Scholar
26.Evesque, P. and Rajchenbach, J., Phys. Rev. Lett. 62 (1989) p. 44; Savage, S.B., J. Fluid Mech. 194 (1988) p. 457.CrossRefGoogle Scholar
27.Clément, E., Durand, J., and Rajchenbach, J., Phys. Rev. Lett. 69 (1992) p. 1189.CrossRefGoogle Scholar
28.Evesque, P., Szmatula, E., and Denis, J-P., Europhys. Lett. 12 (1990) p. 623.CrossRefGoogle Scholar
29.Knight, J.B., Jaeger, H.M., and Nagel, S.R., Phys. Rev. Lett. 70 (1993) p. 3728. The simple scaling form Equation 3 holds over the range shown in Figure 7. In general, the scaling involves both Γ and τ.CrossRefGoogle Scholar
30.Taguchi, Y-h., Phys. Rev. Lett. 69 (1992) p. 1367; Gallas, A., Herrmann, H.J., and Sokolowski, S., Phys. Rev. Lett. p. 1371; Thompson, P.A., Bull. Am. Phys. Soc. 37 (1) (1992) p. 571; Miller, J. (to be published).CrossRefGoogle Scholar
31.Fauve, S., Douady, S., and Laroche, C., J. Phys. (Paris) 50 Colloque C3 (1989) p. 187.CrossRefGoogle Scholar
32.Nakagawa, M., Altobelli, S.A., Caprihan, A., Fukushima, E., and Jeong, E-K., Experiments in Fluids 16 (1993) p. 54.CrossRefGoogle Scholar
33.Ehrichs, E., Knight, J.B., Jaeger, H.M., Nagel, S.R., Kuperman, V.Y., and Karczmar, G. (to be published).Google Scholar
34.Williams, J.C., Powder Technol. 15 (1976) p. 245; and Fuel Soc. J. 14 (University of Sheffield, 1963) p. 29.CrossRefGoogle Scholar
35.Rosato, A., Strandburg, K.J., Prinz, F., and Swendsen, R.H., Phys. Rev. Lett. 58 (1987) p. 1038; Jullien, R., Meakin, P., and Pavlovitch, A., Phys. Rev. Lett. 69 (1992) p. 640; Meakin, P. and Jullien, R., Phys. A 180 (1992) p. 1.CrossRefGoogle Scholar
36.Douady, S., Fauve, S., and Laroche, C., Euro-phys. Lett. 8 (1989) p. 621; Pak, H.K. and Behringer, R.P., Phys. Rev. Lett. 71 (1993) p. 1832.CrossRefGoogle Scholar
37.Miles, J.W. and Henderson, D.M., Annu. Rev. Fluid Mech. 22 (1990) p. 143; Henderson, D.M. and Miles, J.W., J. Fluid Mech. 222 (1991) p. 449.CrossRefGoogle Scholar