Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-10T15:20:08.590Z Has data issue: false hasContentIssue false

Wearable and flexible thermoelectrics for energy harvesting

Published online by Cambridge University Press:  09 March 2018

Ruoming Tian
Affiliation:
Toyota Physical and Chemical Research Institute, Japan; [email protected]
Chunlei Wan
Affiliation:
School of Materials Science and Engineering, Tsinghua University, China; [email protected]
Naoyuki Hayashi
Affiliation:
Fujifilm Corporation, Japan; [email protected]
Toshiaki Aoai
Affiliation:
Chiba University, Japan; [email protected]
Kunihito Koumoto
Affiliation:
Toyota Physical and Chemical Research Institute, Japan; [email protected]
Get access

Abstract

Conjugated polymers have emerged as potential candidates for thermal-energy harvesting. Their flexible and lightweight nature, as well as scalable processing, make them geometrically versatile for a large variety of applications, including powering wearable electronics that are not available for traditional inorganic materials. However, the long-range structural disorder greatly hinders their electrical conduction, and this far outweighs the induced low thermal conductivity; therefore, the thermoelectric performance needs to be significantly improved to fulfill the requirements of efficient devices. Composites and hybrid thermoelectric materials have been developed to capitalize on the individual strengths of conducting polymers and other components, including carbon nanotubes, graphene, and inorganic nanomaterials. In this article, we present recent advances in conjugated polymers, the associated hybrid thermoelectric composites, and the latest breakthroughs in the development of inorganic–organic hybrid superlattices.

Type
Materials for Energy Harvesting
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bubnova, O., Crispin, X., Energy Environ. Sci. 5, 9345 (2012).CrossRefGoogle Scholar
Chen, Y., Zhao, Y., Liang, Z., Energy Environ. Sci. 8, 401 (2015).CrossRefGoogle Scholar
Yang, J., Yip, H.L., Jen, A.K.Y., Adv. Energy Mater. 3, 549 (2013).CrossRefGoogle Scholar
Zhang, Q., Sun, Y., Xu, W., Zhu, D., Adv. Mater. 26, 6829 (2014).CrossRefGoogle Scholar
Culebras, M., Gómez, C.M., Cantarero, A., Materials 7, 6701 (2014).CrossRefGoogle Scholar
Kim, G., Shao, L., Zhang, K., Pipe, K.P., Nat. Mater. 12, 719 (2013).CrossRefGoogle Scholar
Bubnova, O., Khan, Z.U., Wang, H., Braun, S., Evans, D.R., Fabretto, M., Hojati-Talemi, P., Dagnelund, D., Arlin, J.-B., Geerts, Y.H., Desbief, S., Breiby, D.W., Andreasen, J.W., Lazzaroni, R., Chen, W.M., Zozoulenko, I., Fahlman, M., Murphy, P.J., Berggren, M., Crispin, X., Nat. Mater. 13, 190 (2014).CrossRefGoogle Scholar
Anthopoulos, T.D., Anyfantis, G., Papavassiliou, G.C., de Leeuw, D.M., Appl. Phys. Lett. 90, 122105 (2007).CrossRefGoogle Scholar
De Leeuw, D., Simenon, M., Brown, A., Einerhand, R., Synth. Met. 87, 53 (1997).CrossRefGoogle Scholar
Nicolai, H.T., Kuik, M., Wetzelaer, G., De Boer, B., Campbell, C., Risko, C., Brédas, J., Blom, P., Nat. Mater. 11, 882 (2012).CrossRefGoogle Scholar
Sun, Y., Qiu, L., Tang, L., Geng, H., Wang, H., Zhang, F., Huang, D., Xu, W., Yue, P., Guan, Y., Adv. Mater. 28, 3351 (2016).CrossRefGoogle Scholar
Kim, D., Kim, Y., Choi, K., Grunlan, J.C., Yu, C., ACS Nano 4, 513 (2010).CrossRefGoogle Scholar
Yao, Q., Wang, Q., Wang, L., Chen, L., Energy Environ. Sci. 7, 3801 (2014).CrossRefGoogle Scholar
Xu, K., Chen, G., Qiu, D., J. Mater. Chem. A 1, 12395 (2013).CrossRefGoogle Scholar
Wang, L., Yao, Q., Bi, H., Huang, F., Wang, Q., Chen, L., J. Mater. Chem. A 3, 7086 (2015).CrossRefGoogle Scholar
Ju, H., Kim, J., ACS Nano 10, 5730 (2016).CrossRefGoogle Scholar
Yao, Q., Chen, L., Zhang, W., Liufu, S., Chen, X., ACS Nano 4, 2445 (2010).CrossRefGoogle Scholar
Meng, C., Liu, C., Fan, S., Adv. Mater. 22, 535 (2010).CrossRefGoogle Scholar
Chen, J., Gui, X., Wang, Z., Li, Z., Xiang, R., Wang, K., Wu, D., Xia, X., Zhou, Y., Wang, Q., ACS Appl. Mater. Interfaces 4, 81 (2011).CrossRefGoogle Scholar
Wang, Q., Yao, Q., Chang, J., Chen, L., J. Mater. Chem. 22, 17612 (2012).CrossRefGoogle Scholar
Yu, C., Choi, K., Yin, L., Grunlan, J.C., ACS Nano 5, 7885 (2011).CrossRefGoogle Scholar
Moriarty, G.P., Briggs, K., Stevens, B., Yu, C., Grunlan, J.C., Energy Technol. 1, 265 (2013).CrossRefGoogle Scholar
Bounioux, C., Díaz-Chao, P., Campoy-Quiles, M., Martín-González, M.S., Goni, A.R., Yerushalmi-Rozen, R., Müller, C., Energy Environ. Sci. 6, 918 (2013).CrossRefGoogle Scholar
Zhang, B., Sun, J., Katz, H.E., Fang, F., Opila, R.L., ACS Appl. Mater. Interfaces 2, 3170 (2010).CrossRefGoogle Scholar
Yu, C., Kim, Y.S., Kim, D., Grunlan, J.C., Nano Lett. 8, 4428 (2008).CrossRefGoogle Scholar
Wang, H., Hsu, J.H., Yi, S.I., Kim, S.L., Choi, K., Yang, G., Yu, C., Adv. Mater. 27, 6855 (2015).CrossRefGoogle Scholar
Liu, J., Sun, J., Gao, L., Nanoscale 3, 3616 (2011).CrossRefGoogle Scholar
Zhang, K., Davis, M., Qiu, J., Hope-Weeks, L., Wang, S., Nanotechnology 23, 385701 (2012).CrossRefGoogle Scholar
Liang, L., Chen, G., Guo, C.-Y., Compos. Sci. Technol. 129, 130 (2016).CrossRefGoogle Scholar
Oshima, K., Asano, H., Shiraishi, Y., Toshima, N., Jpn. J. Appl. Phys. 55, 02BB07 (2016).CrossRefGoogle Scholar
Wang, H., Yi, S.-I., Pu, X., Yu, C., ACS Appl. Mater. Interfaces 7, 9589 (2015).CrossRefGoogle Scholar
Kim, G.H., Hwang, D.H., Woo, S.I., Phys. Chem. Chem. Phys. 14, 3530 (2012).CrossRefGoogle Scholar
Zhang, K., Zhang, Y., Wang, S., Sci. Rep. 3, 3448 (2013).CrossRefGoogle Scholar
Du, Y., Shen, S.Z., Yang, W., Donelson, R., Cai, K., Casey, P.S., Synth. Met. 161, 2688 (2012).CrossRefGoogle Scholar
Lu, Y., Song, Y., Wang, F., Mater. Chem. Phys. 138, 238 (2013).CrossRefGoogle Scholar
Xiang, J., Drzal, L.T., Polymer 53, 4202 (2012).CrossRefGoogle Scholar
Wang, L., Yao, Q., Bi, H., Huang, F., Wang, Q., Chen, L., J. Mater. Chem. A 2, 11107 (2014).CrossRefGoogle Scholar
Yoo, D., Kim, J., Kim, J.H., Nano Res. 7, 717 (2014).CrossRefGoogle Scholar
Xu, K., Chen, G., Qiu, D., Chem. Asian J. 10, 1225 (2015).CrossRefGoogle Scholar
Xiong, J., Jiang, F., Shi, H., Xu, J., Liu, C., Zhou, W., Jiang, Q., Zhu, Z., Hu, Y., ACS Appl. Mater. Interfaces 7, 14917 (2015).CrossRefGoogle Scholar
Du, Y., Cai, K., Shen, S., Casey, P., Synth. Met. 162, 2102 (2012).CrossRefGoogle Scholar
Hewitt, C.A., Kaiser, A.B., Craps, M., Czerw, R., Roth, S., Carroll, D.L., Synth. Met. 165, 56 (2013).CrossRefGoogle Scholar
Li, F., Cai, K., Shen, S., Chen, S., Synth. Met. 197, 58 (2014).CrossRefGoogle Scholar
Yoo, D., Kim, J., Lee, S.H., Cho, W., Choi, H.H., Kim, F.S., Kim, J.H., J. Mater. Chem. A 3, 6526 (2015).CrossRefGoogle Scholar
Song, H., Liu, C., Zhu, H., Kong, F., Lu, B., Xu, J., Wang, J., Zhao, F., J. Electron. Mater. 42, 1268 (2013).CrossRefGoogle Scholar
Du, Y., Cai, K., Chen, S., Cizek, P., Lin, T., ACS Appl. Mater. Interfaces 6, 5735 (2014).CrossRefGoogle Scholar
Kato, K., Hagino, H., Miyazaki, K., J. Electron. Mater. 42, 1313 (2013).CrossRefGoogle Scholar
Zhang, T., Li, K., Li, C., Ma, S., Hng, H.H., Wei, L., Adv. Electron. Mater. 3, 1600554 (2017).CrossRefGoogle Scholar
Wang, Y., Cai, K., Yao, X., ACS Appl. Mater. Interfaces 3, 1163 (2011).CrossRefGoogle Scholar
See, K.C., Feser, J.P., Chen, C.E., Majumdar, A., Urban, J.J., Segalman, R.A., Nano Lett. 10, 4664 (2010).CrossRefGoogle Scholar
Coates, N.E., Yee, S.K., McCulloch, B., See, K.C., Majumdar, A., Segalman, R.A., Urban, J.J., Adv. Mater. 25, 1629 (2013).CrossRefGoogle Scholar
Yee, S.K., Coates, N.E., Majumdar, A., Urban, J.J., Segalman, R.A., Phys. Chem. Chem. Phys. 15, 4024 (2013).CrossRefGoogle Scholar
Song, H., Cai, K., Energy 125, 519 (2017).CrossRefGoogle Scholar
Toshima, N., Imai, M., Ichikawa, S., J. Electron. Mater. 40, 898 (2011).CrossRefGoogle Scholar
Chatterjee, K., Mitra, M., Kargupta, K., Ganguly, S., Banerjee, D., Nanotechnology 24, 215703 (2013).CrossRefGoogle Scholar
Wang, Y., Cai, K., Yin, J., An, B., Du, Y., Yao, X., J. Nanopart. Res. 13, 533 (2011).CrossRefGoogle Scholar
He, M., Ge, J., Lin, Z., Feng, X., Wang, X., Lu, H., Yang, Y., Qiu, F., Energy Environ. Sci. 5, 8351 (2012).CrossRefGoogle Scholar
Dun, C., Hewitt, C.A., Huang, H., Xu, J., Montgomery, D.S., Nie, W., Jiang, Q., Carroll, D.L., ACS Appl. Mater. Interfaces 7, 7054 (2015).CrossRefGoogle Scholar
Dun, C., Hewitt, C.A., Huang, H., Xu, J., Zhou, C., Huang, W., Cui, Y., Zhou, W., Jiang, Q., Carroll, D.L., Nano Energy 18, 306 (2015).CrossRefGoogle Scholar
Zhou, C., Dun, C., Wang, Q., Wang, K., Shi, Z., Carroll, D.L., Liu, G., Qiao, G., ACS Appl. Mater. Interfaces 7, 21015 (2015).CrossRefGoogle Scholar
Wan, C., Gu, X., Dang, F., Itoh, T., Wang, Y., Sasaki, H., Kondo, M., Koga, K., Yabuki, K., Snyder, G.J., Yang, R., Koumoto, K., Nat. Mater. 14, 622 (2015).CrossRefGoogle Scholar
Wan, C., Tian, R., Kondo, M., Yang, R., Zong, P., Koumoto, K., Nat. Commun. 8, 1024 (2017).CrossRefGoogle Scholar
Wan, C., Tian, R., Azizi, A.B., Huang, Y., Wei, Q., Sasai, R., Wasusate, S., Ishida, T., Koumoto, K., Nano Energy 30, 840 (2016).CrossRefGoogle Scholar
Nonoguchi, Y., Nakano, M., Murayama, T., Hagino, H., Hama, S., Miyazaki, K., Matsubara, R., Nakamura, M., Kawai, T., Adv. Funct. Mater. 26, 3021 (2016).CrossRefGoogle Scholar
Hayashi, N., Sugiura, H., Nomura, K., Aoai, T., “Development of Flexible and Printed Thermoelectric Module,” presented at the International Conference on Organic and Hybrid Thermoelectrics, Kyoto, January 18–20, 2016.Google Scholar
Carrete, J.S., Mingo, N., Tian, G., Ågren, H., Baev, A., Prasad, P.N., J. Phys. Chem. C 116, 10881 (2012).CrossRefGoogle Scholar
Tynell, T., Terasaki, I., Yamauchi, H., Karppinen, M., J. Mater. Chem. A 1, 13619 (2013).CrossRefGoogle Scholar
Niemelä, J.-P., Karttunen, A., Karppinen, M., J. Mater. Chem. C 3, 10349 (2015).CrossRefGoogle Scholar
Tynell, T., Giri, A., Gaskins, J., Hopkins, P.E., Mele, P., Miyazaki, K., Karppinen, M., J. Mater. Chem. A 2, 12150 (2014).CrossRefGoogle Scholar
Lévy, F., Ed., Intercalated Layered Materials (Springer, Lausanne, Switzerland, 1979).CrossRefGoogle Scholar
Dresselhaus, M.S., Ed., Intercalation in Layered Materials (Springer, Cambridge, MA, 1986).CrossRefGoogle Scholar
Wan, C., Kodama, Y., Kondo, M., Sasai, R., Qian, X., Gu, X., Koga, K., Yabuki, K., Yang, R., Koumoto, K., Nano Lett. 15, 6302 (2015).CrossRefGoogle Scholar
Tian, R., Wan, C., Wang, Y., Wei, Q., Ishida, T., Yamamoto, A., Tsuruta, A., Shin, W., Li, S., Koumoto, K., J. Mater. Chem. A 5, 564 (2017).CrossRefGoogle Scholar
Bubnova, O., Khan, Z.U., Malti, A., Braun, S., Fahlman, M., Berggren, M., Crispin, X., Nat. Mater. 10, 429 (2011).CrossRefGoogle Scholar
Wei, Q., Mukaida, M., Kirihara, K., Naitoh, Y., Ishida, T., RSC Adv. 4, 28802 (2014).CrossRefGoogle Scholar
Suemori, K., Hoshino, S., Kamata, T., Appl. Phys. Lett. 103, 153902 (2013).CrossRefGoogle Scholar
Sun, Y., Sheng, P., Di, C., Jiao, F., Xu, W., Qiu, D., Zhu, D., Adv. Mater. 24, 932 (2012).CrossRefGoogle Scholar