Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-27T01:43:42.098Z Has data issue: false hasContentIssue false

Van der Waals Interactions Between Organic Adsorbates and at Organic/Inorganic Interfaces

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Van der Waals (vdW) interactions play a prominent role in the structure and function of organic/organic and organic/inorganic interfaces. Their accurate determination from first principles, however, is a notoriously difficult task. Recently, a surge of interest in modeling vdW interactions has led to promising theoretical developments. This article reviews the state-of-the-art of describing vdW interactions by density-functional theory with respect to accuracy and practicability. The performance of the different methods is demonstrated for simple systems, such as rare-gas dimers and small organic molecules. The nature of binding at organic/inorganic interfaces is then exemplified for the perylene-3,4,9,10-tetracarboxylic-3,4,9,10-dianhydride (PTCDA) molecule at surfaces of coinage metals. This fundamental system is the best-characterized organic molecule/metal interface in experiment and theory. We emphasize the crucial importance of a balanced description of both geometry and electronic structure in order to understand and model the properties of such systems. Finally, the relevance of vdW interactions to the function of actual devices based on interfaces is discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Ortmann, F., Schmidt, W.G., Bechstedt, F., Phys. Rev. Lett. 95, 186101 (2005).CrossRefGoogle Scholar
2.Chakarova-Käck, S.D., Schröder, E., Lundqvist, B.I., Langreth, D.C., Phys. Rev. Lett. 96, 146107 (2006).CrossRefGoogle Scholar
3.McNellis, E., Meyer, J., Reuter, K., Phys. Rev. B 80, 205414 (2009).CrossRefGoogle Scholar
4.Mercurio, G., McNellis, E., Martin, I., Hagen, S., Leyssner, F., Soubatch, S., Meyer, J., Wolf, M., Tegeder, P., Tautz, F.S., Reuter, K., Phys. Rev. Lett. 104, 036102 (2010).CrossRefGoogle Scholar
5.McNellis, E., PhD thesis, Fritz-Haber-Institut der MPG (2010).Google Scholar
6.Atodiresei, N., Caciuc, V., Lazic, P., Blügel, S., Phys. Rev. Lett. 102, 136809 (2009).CrossRefGoogle Scholar
7.Sony, P., Puschnig, P., Nabok, D., Ambrosch-Draxl, C., Phys. Rev. Lett. 99, 176401 (2007).CrossRefGoogle Scholar
8.Romaner, L., Nabok, D., Puschnig, P., Zojer, E., Ambrosch-Draxl, C., New J. Phys. 11, 053010 (2009).CrossRefGoogle Scholar
9.Rohlfing, M., Bredow, T., Phys. Rev. Lett. 101, 266106 (2008).CrossRefGoogle Scholar
10.Heimel, G., Romaner, L., Bredas, J.-L., Zojer, E., Phys. Rev. Lett. 96, 196806 (2006).CrossRefGoogle Scholar
11.Sherrill, C.D., Takatani, T., Hohenstein, E.G., J. Phys. Chem. A 113, 10146 (2009).CrossRefGoogle Scholar
12.Jurecka, P., Sponer, J., Cerný, J., Hobza, P., Phys. Chem. Chem. Phys. 8, 1985 (2006).CrossRefGoogle Scholar
13.Hesselmann, A., J. Chem. Phys. 128, 144112 (2008).CrossRefGoogle Scholar
14.Tkatchenko, A., DiStasio, R.A. Jr, Head-Gordon, M., Scheffler, M., J. Chem. Phys. 131, 094106 (2009).CrossRefGoogle Scholar
15.Bohm, D., Pines, D., Phys. Rev. 92, 609 (1953).CrossRefGoogle Scholar
16.Langreth, D.C., Perdew, J.P., Phys. Rev. B 15, 2884 (1977).CrossRefGoogle Scholar
17.Ren, X., Rinke, P., Scheffler, M., Phys. Rev. B 80, 045402 (2009).CrossRefGoogle Scholar
18.Harl, J., Kresse, G., Phys. Rev. Lett. 103, 056401 (2009).CrossRefGoogle Scholar
19.Andersson, Y., Langreth, D.C., Lundqvist, B.I., Phys. Rev. Lett. 76, 102 (1996).CrossRefGoogle Scholar
20.Dion, M., Rydberg, H., Schröder, E., Langreth, D.C., Lundqvist, B.I., Phys. Rev. Lett. 92, 246401 (2004).CrossRefGoogle Scholar
21.Langreth, D.C., Lundqvist, B.I., Chakarova-Käck, S.D., Cooper, V.R., Dion, M., Hyldgaard, P., Kelkkanen, A., Kleis, J., Kong, L., Li, S., Moses, P.G., Murray, E., Puzder, A., Rydberg, H., Schröder, E., Thonhauser, T., J. Phys. Condens. Matter 21, 084203 (2009).CrossRefGoogle Scholar
22.Grimme, S., J. Comput. Chem. 27, 1787 (2006).CrossRefGoogle Scholar
23.Jurečka, P., Černý, J., Hobza, P., Salahub, D.R., J. Comput. Chem. 28, 555 (2006).CrossRefGoogle Scholar
24.Tkatchenko, A., Scheffler, M., Phys. Rev. Lett. 102, 073005 (2009).CrossRefGoogle Scholar
25.Zhang, Y., Yang, W., Phys. Rev. Lett. 80, 890 (1998).CrossRefGoogle Scholar
26.Roman-Perez, G., Soler, J., Phys. Rev. Lett. 103, 096102 (2009).CrossRefGoogle Scholar
27.Gulans, A., Puska, M.J., Nieminen, R.M., Phys. Rev. B 79, 201105(R) (2009).CrossRefGoogle Scholar
28.Vydrov, O.A., Van Voorhis, T., Phys. Rev. Lett. 103, 063004 (2009).CrossRefGoogle Scholar
29.Klimes, J., Bowler, D.R., Michaelides, A., J. Phys. Condens. Matter 22, 022201 (2010).CrossRefGoogle Scholar
30.Johnson, E.R., Becke, A.D., J. Chem. Phys. 123, 024101 (2005).CrossRefGoogle Scholar
31.Silvestrelli, P.L., Phys. Rev. Lett. 100, 053002 (2008).CrossRefGoogle Scholar
32.Grimme, S., Antony, J., Ehrlich, S., Krieg, H., J. Chem. Phys. 132, 154104 (2010).CrossRefGoogle Scholar
33.Thonhauser, T., Cooper, V.R., Li, S., Puzder, A., Hyldgaard, P., Langreth, D.C., Phys. Rev. B 76, 125112 (2007).CrossRefGoogle Scholar
34.Marom, N., Tkatchenko, A., Scheffler, M., Kronik, L., J. Chem. Theory Comput. 6, 81 (2010).CrossRefGoogle Scholar
35.Aulbur, W.G., Jönsson, L., Wilkins, J.W., Solid State Phys.: Adv. Res. Appl. 54, 1 (2000).CrossRefGoogle Scholar
36.Tautz, F.S., Prog. Surf. Sci. 82, 479 (2007).CrossRefGoogle Scholar
37.Hauschild, A., Karki, K., Cowie, B.C.C., Rohlfing, M., Tautz, F.S., Sokolowski, M., Phys. Rev. Lett. 94, 036106 (2005).CrossRefGoogle Scholar
38.Zou, Y., Kilian, L., Schöll, A., Schmidt, Th., Fink, R., Umbach, E., Surf. Sci. 600, 1260 (2006).CrossRefGoogle Scholar
39.Bagus, P., Staemmler, V., Wöll, C., Phys. Rev. Lett 89, 096104 (2002).CrossRefGoogle Scholar
40.Stahl, U., Gador, D., Soukopp, A., Fink, R., Umbach, E., Surf. Sci. 414, 423 (1998).CrossRefGoogle Scholar
41.Neaton, J.B., Hybertsen, M.S., Louie, S.G., Phys. Rev. Lett. 97, 216405 (2006).CrossRefGoogle Scholar
42.Zaremba, E., Kohn, W., Phys. Rev. B 13, 2270 (1976).CrossRefGoogle Scholar
43.Koch, N., Chem. Phys. Chem. 8, 1438 (2007).CrossRefGoogle Scholar
44.Campbell, I.H., Kress, J.D., Martin, R.L., Smith, D.L., Barashkov, N.N., Ferraris, J.P., Appl. Phys. Lett. 71, 3528 (1997).CrossRefGoogle Scholar
45.Kobayashi, S., Nishikawa, T., Takenobu, T., Mori, S., Shimoda, T., Mitani, T., Shimotani, H., Yoshimoto, N., Ogawa, S., Iwasa, Y., Nat. Mater. 3, 317 (2004).CrossRefGoogle Scholar
46.Pfeiffer, M., Beyer, A., Fritz, T., Leo, K., Appl. Phys. Lett. 73, 3202 (1998).CrossRefGoogle Scholar
47.Gao, W.Y., Kahn, A., J. Appl. Phys. 94, 359 (2003).CrossRefGoogle Scholar
48.Koch, N., Duhm, S., Rabe, J.P., Vollmer, A., Johnson, R.L., Phys. Rev. Lett. 95, 237601 (2005).CrossRefGoogle Scholar
49.Ishii, H., Sugiyama, K., Ito, E., Seki, K., Adv. Mater. 11, 605 (1999).3.0.CO;2-Q>CrossRefGoogle Scholar
50.Braun, S., Salaneck, W.R., Fahlman, M., Adv. Mater. 21, 1450 (2009).CrossRefGoogle Scholar
51.Romaner, L., Heimel, G., Brédas, J.-L., Gerlach, A., Schreiber, F., Johnson, R.J., Zegenhagen, J., Duhm, S., Koch, N., Zojer, E., Phys. Rev. Lett. 99, 256801 (2007).CrossRefGoogle Scholar
52.Track, A.M., Rissner, F., Heimel, G., Romaner, L., Käfer, D., Bashir, A., Rangger, G.M., Hofmann, O.T., Bucko, T., Witte, G., Zojer, E., J. Phys. Chem. C, 114, 2677 (2010).CrossRefGoogle Scholar
53.Harl, J., Schimka, L., Kresse, G., Phys. Rev. B 81, 115126 (2010).CrossRefGoogle Scholar
54.Perdew, J., Burke, K., Ernzerhof, M., Phys. Rev. Lett. 77, 3865 (1996).CrossRefGoogle Scholar