Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-26T02:51:38.576Z Has data issue: false hasContentIssue false

A Unified Approach to Solid-State Amorphization and Melting

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

The crystalline-to-amorphous (c-a) phase transformation can be induced by a variet of solid-state processes ranging from energetic particle irradiation, interface inter diffusion reactions, hydrogen charging and mechanical deformation to the application of high pressures. During the past decade, such transformations have become the focus of considerable research not only because of their potential technological applications, but also because of strong scientific interest in the relationship between the c-a transition and the melting process.

A common feature underlies all solid state amorphization processes: The atomic disorder created in the crystalline lattice in the form of static atomic displacement can induce volume change and elastic softening of the lattice. A particularly striking example of the softening effect is shown in Figure 1 for the case of radiation-induced amorphization of the intermetallic compound Zr3Al. The compound, which has the Ll2 (Cu3Au)-type superlattice structure, was irradiated with energetic ion at room temperature in a high-voltage electron microscope interfaced to a tandem ion accelerator. The rapid decrease in the intensities of both fundamental and superlattice reflections show that irradiation introduces antisite defects (chemical disorder) as well as static atomic displacements. The disordering of the long-range ordered structure, which occurs prior to the onset of amorphization, is accompanied by a volume expansion of about 2.5% and a ~25% decrease in the average velocity of sound. This decrease in sound velocity corresponds to a ~50% decrease in the average shear modulus, which is comparable to that observed for many metals during heating to melting. The volume dependence of this disorder-induced elastic softening is also similar to that associated with heating. In both cases, the shear modulus is a linearly decreasing function of volume expansion. However, for a given amount of expansion, the softening associated with static atomic displacements is nearly twice as large as that associated with increasing anharmonic lattice vibrations.

Type
Research Report
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Johnson, W.L., Prog. Mater. Sci. 30 (1986) p. 81; R.B. Schwarz, J.B. Rubin, and T.J. Tiainen, in Science of Advanced Materials, edited by H. Wiedersich and M. Meshii (American Society for Metals, Metals Park, OH, 1990) p. 1.CrossRefGoogle Scholar
2.Okamoto, P.R. and Meshii, M., in Science of Advanced Materials, edited by Wiedersich, H. and Meshii, M. (American Society for Metals, Metals Park, OH, 1990) p. 33.Google Scholar
3.Brimhall, J.L. and Simonen, E.P., Nucl. Instrum. Methods B16 (1986) p. 187; D.F. Pedraza, J. Mater. Res. 1 (1986) p. 425; D.E. Luzzi and M. Meshii, Res Mechanica 21 (1987) p. 207; K. Maeda and S. Takeuchi, Philos. Mag. B52 (1985) p. 955; Y. Limoge, A. Rahman, H. Hsieh, and S. Yip, J. Non-Cryst. Solids 99 (1988) p. 75; H.J. Fecht and W.L. Johnson, Nature 334 (1988) p. 50; S. Yip and H. Hsieh, in Science of Advanced Materials, edited by H. Wiedersich and M. Meshii (American Society for Metals, Metals Park, OH, 1990) p. 121; D. Wolf, P.R. Okamoto, S. Yip, J.F. Lutsko, and M. Kluge, J. Mater. Res. 5 (1990) p. 286; P.M. Ossi, Rivista del Nuovo Cimento 15 (1992) p. 1; J. Koike, Phys. Rev. B 47 (1993) p. 7700; H. Mori, in Current Topics in Amorphous Materials: Physics and Technology, edited by Y. Sakurai, Y. Hamakawa, T. Masumoto, K. Shirae, and K. Suzuki. (Elsevier Science Publishers B.V. Amsterdam, 1993) p. 1.CrossRefGoogle Scholar
4.Massobrio, C., Pontikis, V., and Martin, G., Phys. Rev. B 41 (1990) p. 10486; C. Massobrio and V. Pontikis, Phys. Rev. B 45 (1992) p. 2484.CrossRefGoogle Scholar
5.Sabochick, M.J. and Lam, N.Q., Phys. Rev. B 43 (1991) p. 5243; M.J. Sabochick and N.Q. Lam, in Surface Chemistry and Beam-Solid Interactions, edited by H. Atwater, F.A. Houle, and D. Lowndes (Mater. Res. Soc. Symp. Proc. 201, Pittsburgh, PA, 1991) p. 387.CrossRefGoogle Scholar
6.Kulp, D.T., Egami, T., Luzzi, D.E., and Vitek, V., J. Alloys Comp. 194 (1993) p. 417.CrossRefGoogle Scholar
7.Johnson, W.L., Li, M., and Krill, C.E. III, J. Non-Cryst. Solids 156–158 (1993) p. 481; M. Li and W.L. Johnson, Phys. Rev. Lett. 70 (1993) p. 120.CrossRefGoogle Scholar
8.Lam, N.Q., Okamoto, P.R., Sabochick, M.J., and Devanathan, R., J. Alloys Comp. 194 (1993) p. 429; N.Q. Lam, M.J. Sabochick, and P.R. Okamoto, Proc. IEA Workshop on The Use of Molecular Dynamics in Modeling Radiation Effects and Other Nonequilibrium Phenomena, May 6–8, 1991, La Jolla, CA, in Radiat. Eff. Defects Solids (1994) in press.; N.Q. Lam, P.R. Okamoto, R. Devanathan, and M. Meshii, Proc. NATO Advanced Study Institute on Statics and Dynamics of Alloy Phase Transformations, June 21 -July 3, 1992, Rhodes, Greece (Plenum Press, New York, 1994) in press.CrossRefGoogle Scholar
9.Lam, N.Q. and Okamoto, P.R., Surf. Coatings Technol. (1994) in press.Google Scholar
10.Devanathan, R., Lam, N.Q., Okamoto, P.R., and Meshii, M., in Materials Theory and Modelling, edited by Broughton, J., Bristowe, P.D., and Newsam, J.M. (Mater. Res. Soc. Symp. Proc. 291, Pittsburgh, PA, 1993) p. 653; R. Devanathan, N.Q. Lam, P.R. Okamoto, and M. Meshii, Phys. Rev. B 48 (1993) p. 42.Google Scholar
11.Devanathan, R., PhD thesis, Northwestern University, 1993.Google Scholar
12.Rehn, L.E., Okamoto, P.R., Pearson, J., Bhadra, R., and Grimsditch, M., Phys. Rev. Lett. 59 (1987) p. 2987; P.R. Okamoto, L.E. Rehn, J. Pearson, R. Bhadra, and M. Grimsditch, J. Less Common Met. 140 (1988) p. 231.CrossRefGoogle Scholar
13.Grimsditch, M., Gray, K.E., Bhadra, R., Kampwirth, R.T., and Rehn, L.E., Phys. Rev. B 35 (1987) p. 883; J. Koike, P.R. Okamoto, R.E. Rehn, R. Bhadra, M. Grimsditch, and M. Meshii, in Beam-Solid Interactions: Physical Phenomena, edited by J.A. Knapp, B.P. Bergesen, and R.A. Zuhr (Mater. Res. Soc. Symp. Proc. 157, Pittsburgh, PA, 1990) p. 777; R.P. Sharma, R. Bhadra, L.E. Rehn, P.M. Baldo, and M. Grimsditch, J. Appl. Phys. 66 (1989) p. 152; J. Zuk, H. Kiefte; and M.J. Clouter, J. Appl. Phys. 73 (1993) p. 4851.CrossRefGoogle Scholar
14.Tallon, J.L., Philos. Mag. A39 (1979) p. 151; J. Phys. Chem. Solids 41 (1984) p. 837.CrossRefGoogle Scholar
15.Voronel, A., Rabinovich, S., Kisliuk, A., Steinberg, V., and Sverbilova, T., Phys. Rev. Lett. 60 (1988) p. 2402.CrossRefGoogle Scholar
16.Devanathan, R., Lam, N.Q., Sabochick, M.J., Okamoto, P.R., and Meshii, M., in Defects in Materials, edited by Bristowe, P.D., Epperson, J.E., Griffith, J.E., and Liliental-Weber, Z. (Mater. Res. Soc. Symp. Proc. 209, Pittsburgh, PA, 1991) p. 231.Google Scholar
17.Lindemann, A., Z. Phys. 11 (1910) p. 609.Google Scholar
18.Ma, E. and Atzmon, M., J. Alloys Comp. 194 (1993) p. 235.CrossRefGoogle Scholar
19.Xu, G., Meshii, M., Okamoto, P.R., and Rehn, L.E., J. Alloys Comp. 194 (1993) p. 401.CrossRefGoogle Scholar
20.Devanathan, R., Lam, N.Q., Sabochick, M.J., Okamoto, P.R., and Meshii, M., J. Alloys Comp. 194 (1993) p. 447.CrossRefGoogle Scholar
21.Meng, W.J., Okamoto, P.R., and Rehn, L.E., in Science of Advanced Materials, edited by Wiedersich, H. and Meshii, M. (American Society for Metals, Metals Park, OH, 1990) p. 99; W.J. Meng, J. Faber, P.R. Okamoto, L.E. Rehn, B.J. Kestle, and R.L Hittermann, J. Appl. Phys. 67 (1990) p. 1312.Google Scholar
22.Sevillano, E., Meuth, H., and Rehr, J.J., Phys. Rev. B 20 (1979) p. 4908.CrossRefGoogle Scholar
23.Busch, G. and Schade, H., Lectures on Solid State Physics (Pergamon Press, New York, 1976) p. 63.Google Scholar
24.Kozlov, E.V., Dementryev, V.M., Emelyanov, V.N., Kormin, N.M., Taylashev, A.S., Stern, D.M., in Order-Disorder Transformation in Alloys, edited by Warlimont, H. (Springer-Verlag, Berlin, 1974) p. 58.CrossRefGoogle Scholar
25.Amamou, A., Kuentzler, R., Dossmann, Y., Forey, P., Glimois, J.L., and Feron, J.L., J. Phys. F12 (1982) p. 2509; D.G. Onn, L.Q. Wang, Y. Obi, and K. Fukamichi, Solid State Commun. 46 (1983) p. 37; M. Matsuura and U. Mizutani, J. Phys. F 16 (1986) p. L183.CrossRefGoogle Scholar
26.Krill, C.E. III, Li, J., Ettl, C., Samwer, K., Yelon, W.B., and Johnson, W.L., J. Non-Cryst. Solids 156–158 (1993) p. 506.CrossRefGoogle Scholar
27.Grimvall, G., Thermophysical Properties of Materials, Selected Topics in Solid State Physics, Vol. XVIII (North Holland, Amsterdam, 1986) Chapter 4.Google Scholar
28.Mermel'shteyn, A.V., Kar'kin, A.Y., Arkhipov, V.Y., and Voronin, V.I., Phys. of Metals and Metallography (USSR) 55 (1983) p. 67.Google Scholar
29.Linker, G., Mater. Sci. Eng. 69 (1985) p. 105; G. Linker, Solid State Commun. 57 (1986) p. 773; G. Linker, Nucl. Instrum. Methods B19-20 (1987) p. 526; A. Seidel, S. Massing, B. Strehlau, and G. Linker, Phys. Rev. B 38 (1988) p. 2273; A. Seidel, G. Linker, and O. Meyer, J. Less Common Met. 145 (1988) p. 89.CrossRefGoogle Scholar
30.Meng, W.J., Koike, J., Okamoto, P.R., and Rehn, L.E., in Processing and Characterization of Materials Using Ion Beams, edited by Rehn, L.E., Greene, J., and Schmidt, F.A. (Mater. Res. Soc. Symp. Proc. 128, Pittsburgh, PA, 1989) p. 345.Google Scholar
31.Kuentzler, R., J. Phys. F 14 (1984) p. L79; S. Kanemaki, O. Takehira, K. Fukamichi, and U. Mizutani, J. Phys. Condens. Matter 1 (1989) p. 5903.CrossRefGoogle Scholar
32.Yehand, X.L.Johnson, W.L., in Rapidly Solidified Alloys and Their Mechanical and Magnetic Properties, edited by Giessen, B.C., Polk, D.E., and Taub, A.I. (Mater. Res. Soc. Symp. Proc. 58, Pittsburgh, PA, 1986) p. 63.Google Scholar
33.Kuentzler, R. and Waterstrat, R.M., Solid State Commun. 54 (1985) p. 517.CrossRefGoogle Scholar
34.Garoche, P. and Johnson, W.L., Solid State Commun. 39 (1981) p. 403; W. Eschner and W. Gey, Superconductivity in d- and f-band Metals, edited by W. Buckel and W. Weber (Kernforschung-szentrum, Karlsruhe, 1982) p. 329; D.G. Onn, L.Q. Wang, and K. Fukamichi, Solid State Commun. 47 (1983) p. 479; R. Kuentzler, A. Amamou, R. Clad, and P. Turek, J. Phys. F 17 (1987) p. 459; S. Roy and A.K. Mandale, J. Phys. F 18 (1988) p. 2649.CrossRefGoogle Scholar
35.Garoche, P. and Bigot, J., Phys. Rev. B 28 (1983) p. 6886.CrossRefGoogle Scholar
36.Koike, J., Okamoto, P.R., Rehn, R.E., and Meshii, M., J. Mater. Res. 4 (1989) p. 1143.CrossRefGoogle Scholar
37.Moine, P. and Jaouen, C., J. Alloys Comp. 194 (1993) p. 373.CrossRefGoogle Scholar
38.Massalski, T.B. and Woychik, C.G., Acta Metall. 33 (1985) p. 1873.CrossRefGoogle Scholar
39.Schumacher, G., Klaumunzer, S., Petry, W., and Dedek, U., J. Phys. F 18 (1988) p. 1681.CrossRefGoogle Scholar